| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfrlem5 | Structured version Visualization version Unicode version | ||
| Description: Lemma for well-founded recursion. The values of two acceptable functions agree within their domains. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| wfrlem5.1 |
|
| wfrlem5.2 |
|
| wfrlem5.3 |
|
| Ref | Expression |
|---|---|
| wfrlem5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . . . 6
| |
| 2 | vex 3203 |
. . . . . 6
| |
| 3 | 1, 2 | breldm 5329 |
. . . . 5
|
| 4 | vex 3203 |
. . . . . 6
| |
| 5 | 1, 4 | breldm 5329 |
. . . . 5
|
| 6 | 3, 5 | anim12i 590 |
. . . 4
|
| 7 | elin 3796 |
. . . 4
| |
| 8 | 6, 7 | sylibr 224 |
. . 3
|
| 9 | anandir 872 |
. . . 4
| |
| 10 | 2 | brres 5402 |
. . . . 5
|
| 11 | 4 | brres 5402 |
. . . . 5
|
| 12 | 10, 11 | anbi12i 733 |
. . . 4
|
| 13 | 9, 12 | sylbb2 228 |
. . 3
|
| 14 | 8, 13 | mpdan 702 |
. 2
|
| 15 | wfrlem5.3 |
. . . . . . . . 9
| |
| 16 | 15 | wfrlem3 7416 |
. . . . . . . 8
|
| 17 | ssinss1 3841 |
. . . . . . . 8
| |
| 18 | wfrlem5.1 |
. . . . . . . . . 10
| |
| 19 | wess 5101 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | mpi 20 |
. . . . . . . . 9
|
| 21 | wfrlem5.2 |
. . . . . . . . . 10
| |
| 22 | sess2 5083 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | mpi 20 |
. . . . . . . . 9
|
| 24 | 20, 23 | jca 554 |
. . . . . . . 8
|
| 25 | 16, 17, 24 | 3syl 18 |
. . . . . . 7
|
| 26 | 25 | adantr 481 |
. . . . . 6
|
| 27 | 18, 15 | wfrlem4 7418 |
. . . . . 6
|
| 28 | 18, 15 | wfrlem4 7418 |
. . . . . . . 8
|
| 29 | 28 | ancoms 469 |
. . . . . . 7
|
| 30 | incom 3805 |
. . . . . . . . . . 11
| |
| 31 | 30 | reseq2i 5393 |
. . . . . . . . . 10
|
| 32 | 31 | fneq1i 5985 |
. . . . . . . . 9
|
| 33 | 30 | fneq2i 5986 |
. . . . . . . . 9
|
| 34 | 32, 33 | bitri 264 |
. . . . . . . 8
|
| 35 | 31 | fveq1i 6192 |
. . . . . . . . . 10
|
| 36 | predeq2 5683 |
. . . . . . . . . . . . 13
| |
| 37 | 30, 36 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 38 | 31, 37 | reseq12i 5394 |
. . . . . . . . . . 11
|
| 39 | 38 | fveq2i 6194 |
. . . . . . . . . 10
|
| 40 | 35, 39 | eqeq12i 2636 |
. . . . . . . . 9
|
| 41 | 30, 40 | raleqbii 2990 |
. . . . . . . 8
|
| 42 | 34, 41 | anbi12i 733 |
. . . . . . 7
|
| 43 | 29, 42 | sylibr 224 |
. . . . . 6
|
| 44 | wfr3g 7413 |
. . . . . 6
| |
| 45 | 26, 27, 43, 44 | syl3anc 1326 |
. . . . 5
|
| 46 | 45 | breqd 4664 |
. . . 4
|
| 47 | 46 | biimprd 238 |
. . 3
|
| 48 | 15 | wfrlem2 7415 |
. . . . 5
|
| 49 | funres 5929 |
. . . . 5
| |
| 50 | dffun2 5898 |
. . . . . 6
| |
| 51 | 50 | simprbi 480 |
. . . . 5
|
| 52 | 2sp 2056 |
. . . . . 6
| |
| 53 | 52 | sps 2055 |
. . . . 5
|
| 54 | 48, 49, 51, 53 | 4syl 19 |
. . . 4
|
| 55 | 54 | adantr 481 |
. . 3
|
| 56 | 47, 55 | sylan2d 499 |
. 2
|
| 57 | 14, 56 | syl5 34 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
| This theorem is referenced by: wfrfun 7425 |
| Copyright terms: Public domain | W3C validator |