| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > copsex2t | Structured version Visualization version Unicode version | ||
| Description: Closed theorem form of copsex2g 4958. (Contributed by NM, 17-Feb-2013.) |
| Ref | Expression |
|---|---|
| copsex2t |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2028 |
. . 3
| |
| 2 | nfe1 2027 |
. . . 4
| |
| 3 | nfv 1843 |
. . . 4
| |
| 4 | 2, 3 | nfbi 1833 |
. . 3
|
| 5 | nfa2 2040 |
. . . 4
| |
| 6 | nfe1 2027 |
. . . . . 6
| |
| 7 | 6 | nfex 2154 |
. . . . 5
|
| 8 | nfv 1843 |
. . . . 5
| |
| 9 | 7, 8 | nfbi 1833 |
. . . 4
|
| 10 | opeq12 4404 |
. . . . . . . 8
| |
| 11 | copsexg 4956 |
. . . . . . . . 9
| |
| 12 | 11 | eqcoms 2630 |
. . . . . . . 8
|
| 13 | 10, 12 | syl 17 |
. . . . . . 7
|
| 14 | 13 | adantl 482 |
. . . . . 6
|
| 15 | 2sp 2056 |
. . . . . . 7
| |
| 16 | 15 | imp 445 |
. . . . . 6
|
| 17 | 14, 16 | bitr3d 270 |
. . . . 5
|
| 18 | 17 | ex 450 |
. . . 4
|
| 19 | 5, 9, 18 | exlimd 2087 |
. . 3
|
| 20 | 1, 4, 19 | exlimd 2087 |
. 2
|
| 21 | elisset 3215 |
. . . 4
| |
| 22 | elisset 3215 |
. . . 4
| |
| 23 | 21, 22 | anim12i 590 |
. . 3
|
| 24 | eeanv 2182 |
. . 3
| |
| 25 | 23, 24 | sylibr 224 |
. 2
|
| 26 | 20, 25 | impel 485 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 |
| This theorem is referenced by: opelopabt 4987 |
| Copyright terms: Public domain | W3C validator |