| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orbi123i | Structured version Visualization version Unicode version | ||
| Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| bi3.1 |
|
| bi3.2 |
|
| bi3.3 |
|
| Ref | Expression |
|---|---|
| 3orbi123i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3.1 |
. . . 4
| |
| 2 | bi3.2 |
. . . 4
| |
| 3 | 1, 2 | orbi12i 543 |
. . 3
|
| 4 | bi3.3 |
. . 3
| |
| 5 | 3, 4 | orbi12i 543 |
. 2
|
| 6 | df-3or 1038 |
. 2
| |
| 7 | df-3or 1038 |
. 2
| |
| 8 | 5, 6, 7 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-3or 1038 |
| This theorem is referenced by: ne3anior 2887 wecmpep 5106 cnvso 5674 sorpss 6942 ordon 6982 soxp 7290 dford2 8517 elfz0lmr 12583 axlowdimlem6 25827 elxrge02 29640 brtp 31639 dfon2 31697 sltsolem1 31826 frege129d 38055 dfxlim2 40074 |
| Copyright terms: Public domain | W3C validator |