![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi1i | Structured version Visualization version Unicode version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3anbi1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi1i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | biid 251 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | biid 251 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3anbi123i 1251 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: iinfi 8323 fzolb 12476 brfi1uzind 13280 opfi1uzind 13283 brfi1uzindOLD 13286 opfi1uzindOLD 13289 sqrlem5 13987 bitsmod 15158 isfunc 16524 txcn 21429 trfil2 21691 isclmp 22897 eulerpartlemn 30443 bnj976 30848 bnj543 30963 bnj594 30982 bnj917 31004 topdifinffinlem 33195 dath 35022 elfzolborelfzop1 42309 nnolog2flm1 42384 |
Copyright terms: Public domain | W3C validator |