MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soxp Structured version   Visualization version   Unicode version

Theorem soxp 7290
Description: A lexicographical ordering of two strictly ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
Hypothesis
Ref Expression
soxp.1  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
Assertion
Ref Expression
soxp  |-  ( ( R  Or  A  /\  S  Or  B )  ->  T  Or  ( A  X.  B ) )
Distinct variable groups:    x, A, y    x, B, y    x, R, y    x, S, y
Allowed substitution hints:    T( x, y)

Proof of Theorem soxp
Dummy variables  a 
b  c  d  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sopo 5052 . . 3  |-  ( R  Or  A  ->  R  Po  A )
2 sopo 5052 . . 3  |-  ( S  Or  B  ->  S  Po  B )
3 soxp.1 . . . 4  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
43poxp 7289 . . 3  |-  ( ( R  Po  A  /\  S  Po  B )  ->  T  Po  ( A  X.  B ) )
51, 2, 4syl2an 494 . 2  |-  ( ( R  Or  A  /\  S  Or  B )  ->  T  Po  ( A  X.  B ) )
6 elxp 5131 . . . . 5  |-  ( t  e.  ( A  X.  B )  <->  E. a E. b ( t  = 
<. a ,  b >.  /\  ( a  e.  A  /\  b  e.  B
) ) )
7 elxp 5131 . . . . 5  |-  ( u  e.  ( A  X.  B )  <->  E. c E. d ( u  = 
<. c ,  d >.  /\  ( c  e.  A  /\  d  e.  B
) ) )
8 ioran 511 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d ) )  <->  ( -.  ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  -.  ( a  =  c  /\  b  =  d ) ) )
9 ioran 511 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  ( a R c  \/  ( a  =  c  /\  b S d ) )  <->  ( -.  a R c  /\  -.  ( a  =  c  /\  b S d ) ) )
10 ianor 509 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  ( a  =  c  /\  b S d )  <->  ( -.  a  =  c  \/  -.  b S d ) )
1110anbi2i 730 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( -.  a R c  /\  -.  ( a  =  c  /\  b S d ) )  <-> 
( -.  a R c  /\  ( -.  a  =  c  \/ 
-.  b S d ) ) )
129, 11bitri 264 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  ( a R c  \/  ( a  =  c  /\  b S d ) )  <->  ( -.  a R c  /\  ( -.  a  =  c  \/  -.  b S d ) ) )
13 ianor 509 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  ( a  =  c  /\  b  =  d )  <->  ( -.  a  =  c  \/  -.  b  =  d )
)
1412, 13anbi12i 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  -.  ( a  =  c  /\  b  =  d ) )  <-> 
( ( -.  a R c  /\  ( -.  a  =  c  \/  -.  b S d ) )  /\  ( -.  a  =  c  \/  -.  b  =  d ) ) )
158, 14bitri 264 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d ) )  <->  ( ( -.  a R c  /\  ( -.  a  =  c  \/  -.  b S d ) )  /\  ( -.  a  =  c  \/  -.  b  =  d )
) )
16 solin 5058 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  ->  (
a R c  \/  a  =  c  \/  c R a ) )
17 3orass 1040 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( a R c  \/  a  =  c  \/  c R a )  <-> 
( a R c  \/  ( a  =  c  \/  c R a ) ) )
18 df-or 385 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( a R c  \/  ( a  =  c  \/  c R a ) )  <->  ( -.  a R c  ->  (
a  =  c  \/  c R a ) ) )
1917, 18bitri 264 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( a R c  \/  a  =  c  \/  c R a )  <-> 
( -.  a R c  ->  ( a  =  c  \/  c R a ) ) )
2016, 19sylib 208 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  ->  ( -.  a R c  -> 
( a  =  c  \/  c R a ) ) )
21 solin 5058 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) )  ->  (
b S d  \/  b  =  d  \/  d S b ) )
22 3orass 1040 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( b S d  \/  b  =  d  \/  d S b )  <-> 
( b S d  \/  ( b  =  d  \/  d S b ) ) )
23 df-or 385 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( b S d  \/  ( b  =  d  \/  d S b ) )  <->  ( -.  b S d  ->  (
b  =  d  \/  d S b ) ) )
2422, 23bitri 264 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( b S d  \/  b  =  d  \/  d S b )  <-> 
( -.  b S d  ->  ( b  =  d  \/  d S b ) ) )
2521, 24sylib 208 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) )  ->  ( -.  b S d  -> 
( b  =  d  \/  d S b ) ) )
2625orim2d 885 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) )  ->  (
( -.  a  =  c  \/  -.  b S d )  -> 
( -.  a  =  c  \/  ( b  =  d  \/  d S b ) ) ) )
2720, 26im2anan9 880 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( -.  a R c  /\  ( -.  a  =  c  \/  -.  b S d ) )  ->  (
( a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  ( b  =  d  \/  d S b ) ) ) ) )
28 pm2.53 388 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( a  =  c  \/  c R a )  ->  ( -.  a  =  c  ->  c R a ) )
29 orc 400 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( c R a  ->  (
c R a  \/  ( c  =  a  /\  d S b ) ) )
3028, 29syl6 35 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( a  =  c  \/  c R a )  ->  ( -.  a  =  c  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
3130adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  ( b  =  d  \/  d S b ) ) )  -> 
( -.  a  =  c  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
32 orel1 397 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( -.  b  =  d  -> 
( ( b  =  d  \/  d S b )  ->  d S b ) )
3332orim2d 885 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  b  =  d  -> 
( ( -.  a  =  c  \/  (
b  =  d  \/  d S b ) )  ->  ( -.  a  =  c  \/  d S b ) ) )
3433anim2d 589 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  b  =  d  -> 
( ( ( a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  ( b  =  d  \/  d S b ) ) )  ->  ( (
a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  d S b ) ) ) )
35 imor 428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( a  =  c  -> 
d S b )  <-> 
( -.  a  =  c  \/  d S b ) )
3635biimpri 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( -.  a  =  c  \/  d S b )  ->  ( a  =  c  ->  d S b ) )
3736com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( a  =  c  ->  (
( -.  a  =  c  \/  d S b )  ->  d S b ) )
38 equcomi 1944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( a  =  c  ->  c  =  a )
3938anim1i 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( a  =  c  /\  d S b )  -> 
( c  =  a  /\  d S b ) )
4039olcd 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( a  =  c  /\  d S b )  -> 
( c R a  \/  ( c  =  a  /\  d S b ) ) )
4140ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( a  =  c  ->  (
d S b  -> 
( c R a  \/  ( c  =  a  /\  d S b ) ) ) )
4237, 41syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( a  =  c  ->  (
( -.  a  =  c  \/  d S b )  ->  (
c R a  \/  ( c  =  a  /\  d S b ) ) ) )
4329a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( c R a  ->  (
( -.  a  =  c  \/  d S b )  ->  (
c R a  \/  ( c  =  a  /\  d S b ) ) ) )
4442, 43jaoi 394 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( a  =  c  \/  c R a )  ->  ( ( -.  a  =  c  \/  d S b )  ->  ( c R a  \/  ( c  =  a  /\  d S b ) ) ) )
4544imp 445 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  d S b ) )  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) )
4634, 45syl6com 37 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  ( b  =  d  \/  d S b ) ) )  -> 
( -.  b  =  d  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
4731, 46jaod 395 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( a  =  c  \/  c R a )  /\  ( -.  a  =  c  \/  ( b  =  d  \/  d S b ) ) )  -> 
( ( -.  a  =  c  \/  -.  b  =  d )  ->  ( c R a  \/  ( c  =  a  /\  d S b ) ) ) )
4827, 47syl6 35 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( -.  a R c  /\  ( -.  a  =  c  \/  -.  b S d ) )  ->  (
( -.  a  =  c  \/  -.  b  =  d )  -> 
( c R a  \/  ( c  =  a  /\  d S b ) ) ) ) )
4948impd 447 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( ( -.  a R c  /\  ( -.  a  =  c  \/  -.  b S d ) )  /\  ( -.  a  =  c  \/  -.  b  =  d )
)  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
5015, 49syl5bi 232 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( -.  ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  (
a  =  c  /\  b  =  d )
)  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
51 df-3or 1038 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( c R a  \/  (
c  =  a  /\  d S b ) ) )  <->  ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  (
a  =  c  /\  b  =  d )
)  \/  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
52 df-or 385 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d ) )  \/  ( c R a  \/  ( c  =  a  /\  d S b ) ) )  <-> 
( -.  ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  (
a  =  c  /\  b  =  d )
)  ->  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
5351, 52bitri 264 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( c R a  \/  (
c  =  a  /\  d S b ) ) )  <->  ( -.  (
( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d ) )  ->  (
c R a  \/  ( c  =  a  /\  d S b ) ) ) )
5450, 53sylibr 224 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( a R c  \/  ( a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d )  \/  (
c R a  \/  ( c  =  a  /\  d S b ) ) ) )
55 pm3.2 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  A  /\  c  e.  A
)  /\  ( b  e.  B  /\  d  e.  B ) )  -> 
( ( a R c  \/  ( a  =  c  /\  b S d ) )  ->  ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) ) ) )
5655ad2ant2l 782 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( a R c  \/  ( a  =  c  /\  b S d ) )  ->  ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) ) ) )
57 idd 24 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( a  =  c  /\  b  =  d )  ->  (
a  =  c  /\  b  =  d )
) )
58 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  ->  (
a  e.  A  /\  c  e.  A )
)
5958ancomd 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  ->  (
c  e.  A  /\  a  e.  A )
)
60 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) )  ->  (
b  e.  B  /\  d  e.  B )
)
6160ancomd 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) )  ->  (
d  e.  B  /\  b  e.  B )
)
62 pm3.2 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( c  e.  A  /\  a  e.  A
)  /\  ( d  e.  B  /\  b  e.  B ) )  -> 
( ( c R a  \/  ( c  =  a  /\  d S b ) )  ->  ( ( ( c  e.  A  /\  a  e.  A )  /\  ( d  e.  B  /\  b  e.  B
) )  /\  (
c R a  \/  ( c  =  a  /\  d S b ) ) ) ) )
6359, 61, 62syl2an 494 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( c R a  \/  ( c  =  a  /\  d S b ) )  ->  ( ( ( c  e.  A  /\  a  e.  A )  /\  ( d  e.  B  /\  b  e.  B
) )  /\  (
c R a  \/  ( c  =  a  /\  d S b ) ) ) ) )
6456, 57, 633orim123d 1407 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( ( a R c  \/  (
a  =  c  /\  b S d ) )  \/  ( a  =  c  /\  b  =  d )  \/  (
c R a  \/  ( c  =  a  /\  d S b ) ) )  -> 
( ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A
)  /\  ( d  e.  B  /\  b  e.  B ) )  /\  ( c R a  \/  ( c  =  a  /\  d S b ) ) ) ) ) )
6554, 64mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  Or  A  /\  ( a  e.  A  /\  c  e.  A
) )  /\  ( S  Or  B  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A
)  /\  ( d  e.  B  /\  b  e.  B ) )  /\  ( c R a  \/  ( c  =  a  /\  d S b ) ) ) ) )
6665an4s 869 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  Or  A  /\  S  Or  B
)  /\  ( (
a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) ) )  -> 
( ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A
)  /\  ( d  e.  B  /\  b  e.  B ) )  /\  ( c R a  \/  ( c  =  a  /\  d S b ) ) ) ) )
6766expcom 451 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  A  /\  c  e.  A
)  /\  ( b  e.  B  /\  d  e.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( (
( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A )  /\  (
d  e.  B  /\  b  e.  B )
)  /\  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) ) ) )
6867an4s 869 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( (
( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A )  /\  (
d  e.  B  /\  b  e.  B )
)  /\  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) ) ) )
69 breq12 4658 . . . . . . . . . . . . . . . . 17  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( t T u  <->  <. a ,  b >. T <. c ,  d >. )
)
70 eqeq12 2635 . . . . . . . . . . . . . . . . 17  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( t  =  u  <->  <. a ,  b >.  =  <. c ,  d >. )
)
71 breq12 4658 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  =  <. c ,  d >.  /\  t  =  <. a ,  b
>. )  ->  ( u T t  <->  <. c ,  d >. T <. a ,  b >. )
)
7271ancoms 469 . . . . . . . . . . . . . . . . 17  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( u T t  <->  <. c ,  d >. T <. a ,  b >. )
)
7369, 70, 723orbi123d 1398 . . . . . . . . . . . . . . . 16  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( ( t T u  \/  t  =  u  \/  u T t )  <-> 
( <. a ,  b
>. T <. c ,  d
>.  \/  <. a ,  b
>.  =  <. c ,  d >.  \/  <. c ,  d >. T <. a ,  b >. )
) )
743xporderlem 7288 . . . . . . . . . . . . . . . . 17  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<->  ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
75 vex 3203 . . . . . . . . . . . . . . . . . 18  |-  a  e. 
_V
76 vex 3203 . . . . . . . . . . . . . . . . . 18  |-  b  e. 
_V
7775, 76opth 4945 . . . . . . . . . . . . . . . . 17  |-  ( <.
a ,  b >.  =  <. c ,  d
>. 
<->  ( a  =  c  /\  b  =  d ) )
783xporderlem 7288 . . . . . . . . . . . . . . . . 17  |-  ( <.
c ,  d >. T <. a ,  b
>. 
<->  ( ( ( c  e.  A  /\  a  e.  A )  /\  (
d  e.  B  /\  b  e.  B )
)  /\  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )
7974, 77, 783orbi123i 1252 . . . . . . . . . . . . . . . 16  |-  ( (
<. a ,  b >. T <. c ,  d
>.  \/  <. a ,  b
>.  =  <. c ,  d >.  \/  <. c ,  d >. T <. a ,  b >. )  <->  ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A )  /\  (
d  e.  B  /\  b  e.  B )
)  /\  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) ) )
8073, 79syl6bb 276 . . . . . . . . . . . . . . 15  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( ( t T u  \/  t  =  u  \/  u T t )  <-> 
( ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A
)  /\  ( d  e.  B  /\  b  e.  B ) )  /\  ( c R a  \/  ( c  =  a  /\  d S b ) ) ) ) ) )
8180biimprcd 240 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  \/  ( a  =  c  /\  b  =  d )  \/  ( ( ( c  e.  A  /\  a  e.  A )  /\  (
d  e.  B  /\  b  e.  B )
)  /\  ( c R a  \/  (
c  =  a  /\  d S b ) ) ) )  ->  (
( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( t T u  \/  t  =  u  \/  u T t ) ) )
8268, 81syl6 35 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( (
t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( t T u  \/  t  =  u  \/  u T t ) ) ) )
8382com3r 87 . . . . . . . . . . . 12  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( t T u  \/  t  =  u  \/  u T t ) ) ) )
8483imp 445 . . . . . . . . . . 11  |-  ( ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  /\  (
( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B ) ) )  ->  ( ( R  Or  A  /\  S  Or  B )  ->  (
t T u  \/  t  =  u  \/  u T t ) ) )
8584an4s 869 . . . . . . . . . 10  |-  ( ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) ) )  ->  ( ( R  Or  A  /\  S  Or  B )  ->  (
t T u  \/  t  =  u  \/  u T t ) ) )
8685expcom 451 . . . . . . . . 9  |-  ( ( u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( ( R  Or  A  /\  S  Or  B )  ->  ( t T u  \/  t  =  u  \/  u T t ) ) ) )
8786exlimivv 1860 . . . . . . . 8  |-  ( E. c E. d ( u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( ( R  Or  A  /\  S  Or  B )  ->  ( t T u  \/  t  =  u  \/  u T t ) ) ) )
8887com12 32 . . . . . . 7  |-  ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( t T u  \/  t  =  u  \/  u T t ) ) ) )
8988exlimivv 1860 . . . . . 6  |-  ( E. a E. b ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( t T u  \/  t  =  u  \/  u T t ) ) ) )
9089imp 445 . . . . 5  |-  ( ( E. a E. b
( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  E. c E. d ( u  = 
<. c ,  d >.  /\  ( c  e.  A  /\  d  e.  B
) ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( t T u  \/  t  =  u  \/  u T t ) ) )
916, 7, 90syl2anb 496 . . . 4  |-  ( ( t  e.  ( A  X.  B )  /\  u  e.  ( A  X.  B ) )  -> 
( ( R  Or  A  /\  S  Or  B
)  ->  ( t T u  \/  t  =  u  \/  u T t ) ) )
9291com12 32 . . 3  |-  ( ( R  Or  A  /\  S  Or  B )  ->  ( ( t  e.  ( A  X.  B
)  /\  u  e.  ( A  X.  B
) )  ->  (
t T u  \/  t  =  u  \/  u T t ) ) )
9392ralrimivv 2970 . 2  |-  ( ( R  Or  A  /\  S  Or  B )  ->  A. t  e.  ( A  X.  B ) A. u  e.  ( A  X.  B ) ( t T u  \/  t  =  u  \/  u T t ) )
94 df-so 5036 . 2  |-  ( T  Or  ( A  X.  B )  <->  ( T  Po  ( A  X.  B
)  /\  A. t  e.  ( A  X.  B
) A. u  e.  ( A  X.  B
) ( t T u  \/  t  =  u  \/  u T t ) ) )
955, 93, 94sylanbrc 698 1  |-  ( ( R  Or  A  /\  S  Or  B )  ->  T  Or  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653   {copab 4712    Po wpo 5033    Or wor 5034    X. cxp 5112   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  wexp  7291
  Copyright terms: Public domain W3C validator