MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem6 Structured version   Visualization version   Unicode version

Theorem axlowdimlem6 25827
Description: Lemma for axlowdim 25841. Show that three points are non-colinear. (Contributed by Scott Fenton, 29-Jun-2013.)
Hypotheses
Ref Expression
axlowdimlem6.1  |-  A  =  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
axlowdimlem6.2  |-  B  =  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
axlowdimlem6.3  |-  C  =  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
Assertion
Ref Expression
axlowdimlem6  |-  ( N  e.  ( ZZ>= `  2
)  ->  -.  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )

Proof of Theorem axlowdimlem6
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 11408 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  e.  ZZ )
2 eluzelz 11697 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
3 2nn 11185 . . . . . . . . . . 11  |-  2  e.  NN
4 uznnssnn 11735 . . . . . . . . . . 11  |-  ( 2  e.  NN  ->  ( ZZ>=
`  2 )  C_  NN )
53, 4ax-mp 5 . . . . . . . . . 10  |-  ( ZZ>= ` 
2 )  C_  NN
6 nnuz 11723 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
75, 6sseqtri 3637 . . . . . . . . 9  |-  ( ZZ>= ` 
2 )  C_  ( ZZ>=
`  1 )
87sseli 3599 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ( ZZ>= `  1 )
)
9 eluzle 11700 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  <_  N )
108, 9syl 17 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  <_  N )
11 1re 10039 . . . . . . . 8  |-  1  e.  RR
1211leidi 10562 . . . . . . 7  |-  1  <_  1
1310, 12jctil 560 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1  <_  1  /\  1  <_  N ) )
14 elfz4 12335 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  N  e.  ZZ  /\  1  e.  ZZ )  /\  ( 1  <_  1  /\  1  <_  N ) )  ->  1  e.  ( 1 ... N
) )
151, 2, 1, 13, 14syl31anc 1329 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  e.  ( 1 ... N
) )
16 eluzel2 11692 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  e.  ZZ )
17 eluzle 11700 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
18 1le2 11241 . . . . . . 7  |-  1  <_  2
1917, 18jctil 560 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1  <_  2  /\  2  <_  N ) )
20 elfz4 12335 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  N  e.  ZZ  /\  2  e.  ZZ )  /\  ( 1  <_  2  /\  2  <_  N ) )  ->  2  e.  ( 1 ... N
) )
211, 2, 16, 19, 20syl31anc 1329 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  e.  ( 1 ... N
) )
22 ax-1ne0 10005 . . . . . . 7  |-  1  =/=  0
23 1t1e1 11175 . . . . . . . 8  |-  ( 1  x.  1 )  =  1
24 0cn 10032 . . . . . . . . 9  |-  0  e.  CC
2524mul01i 10226 . . . . . . . 8  |-  ( 0  x.  0 )  =  0
2623, 25neeq12i 2860 . . . . . . 7  |-  ( ( 1  x.  1 )  =/=  ( 0  x.  0 )  <->  1  =/=  0 )
2722, 26mpbir 221 . . . . . 6  |-  ( 1  x.  1 )  =/=  ( 0  x.  0 )
28 fveq2 6191 . . . . . . . . . . . 12  |-  ( i  =  1  ->  (
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  =  ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
1 ) )
29 0re 10040 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
3011, 29axlowdimlem4 25825 . . . . . . . . . . . . . . 15  |-  { <. 1 ,  1 >. , 
<. 2 ,  0
>. } : ( 1 ... 2 ) --> RR
31 ffn 6045 . . . . . . . . . . . . . . 15  |-  ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. } : ( 1 ... 2 ) --> RR  ->  { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  Fn  ( 1 ... 2 ) )
3230, 31ax-mp 5 . . . . . . . . . . . . . 14  |-  { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  Fn  ( 1 ... 2 )
33 axlowdimlem1 25822 . . . . . . . . . . . . . . 15  |-  ( ( 3 ... N )  X.  { 0 } ) : ( 3 ... N ) --> RR
34 ffn 6045 . . . . . . . . . . . . . . 15  |-  ( ( ( 3 ... N
)  X.  { 0 } ) : ( 3 ... N ) --> RR  ->  ( (
3 ... N )  X. 
{ 0 } )  Fn  ( 3 ... N ) )
3533, 34ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( 3 ... N )  X.  { 0 } )  Fn  ( 3 ... N )
36 axlowdimlem2 25823 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... 2 )  i^i  ( 3 ... N ) )  =  (/)
37 1z 11407 . . . . . . . . . . . . . . . . 17  |-  1  e.  ZZ
38 2z 11409 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
3937, 38, 373pm3.2i 1239 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  ZZ  /\  2  e.  ZZ  /\  1  e.  ZZ )
4012, 18pm3.2i 471 . . . . . . . . . . . . . . . 16  |-  ( 1  <_  1  /\  1  <_  2 )
41 elfz4 12335 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  e.  ZZ  /\  2  e.  ZZ  /\  1  e.  ZZ )  /\  ( 1  <_  1  /\  1  <_  2 ) )  ->  1  e.  ( 1 ... 2
) )
4239, 40, 41mp2an 708 . . . . . . . . . . . . . . 15  |-  1  e.  ( 1 ... 2
)
4336, 42pm3.2i 471 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... 2
)  i^i  ( 3 ... N ) )  =  (/)  /\  1  e.  ( 1 ... 2
) )
44 fvun1 6269 . . . . . . . . . . . . . 14  |-  ( ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  Fn  (
1 ... 2 )  /\  ( ( 3 ... N )  X.  {
0 } )  Fn  ( 3 ... N
)  /\  ( (
( 1 ... 2
)  i^i  ( 3 ... N ) )  =  (/)  /\  1  e.  ( 1 ... 2
) ) )  -> 
( ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  1
)  =  ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. } `  1
) )
4532, 35, 43, 44mp3an 1424 . . . . . . . . . . . . 13  |-  ( ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
1 )  =  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. } `  1
)
46 1ne2 11240 . . . . . . . . . . . . . 14  |-  1  =/=  2
47 1ex 10035 . . . . . . . . . . . . . . 15  |-  1  e.  _V
4847, 47fvpr1 6456 . . . . . . . . . . . . . 14  |-  ( 1  =/=  2  ->  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. } `  1
)  =  1 )
4946, 48ax-mp 5 . . . . . . . . . . . . 13  |-  ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. } `  1
)  =  1
5045, 49eqtri 2644 . . . . . . . . . . . 12  |-  ( ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
1 )  =  1
5128, 50syl6eq 2672 . . . . . . . . . . 11  |-  ( i  =  1  ->  (
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  =  1 )
52 fveq2 6191 . . . . . . . . . . . 12  |-  ( i  =  1  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  =  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
1 ) )
5329, 29axlowdimlem4 25825 . . . . . . . . . . . . . . 15  |-  { <. 1 ,  0 >. , 
<. 2 ,  0
>. } : ( 1 ... 2 ) --> RR
54 ffn 6045 . . . . . . . . . . . . . . 15  |-  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. } : ( 1 ... 2 ) --> RR  ->  { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  Fn  ( 1 ... 2 ) )
5553, 54ax-mp 5 . . . . . . . . . . . . . 14  |-  { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  Fn  ( 1 ... 2 )
56 fvun1 6269 . . . . . . . . . . . . . 14  |-  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  Fn  (
1 ... 2 )  /\  ( ( 3 ... N )  X.  {
0 } )  Fn  ( 3 ... N
)  /\  ( (
( 1 ... 2
)  i^i  ( 3 ... N ) )  =  (/)  /\  1  e.  ( 1 ... 2
) ) )  -> 
( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  1
)  =  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. } `  1
) )
5755, 35, 43, 56mp3an 1424 . . . . . . . . . . . . 13  |-  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
1 )  =  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. } `  1
)
5829elexi 3213 . . . . . . . . . . . . . . 15  |-  0  e.  _V
5947, 58fvpr1 6456 . . . . . . . . . . . . . 14  |-  ( 1  =/=  2  ->  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. } `  1
)  =  0 )
6046, 59ax-mp 5 . . . . . . . . . . . . 13  |-  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. } `  1
)  =  0
6157, 60eqtri 2644 . . . . . . . . . . . 12  |-  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
1 )  =  0
6252, 61syl6eq 2672 . . . . . . . . . . 11  |-  ( i  =  1  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  =  0 )
6351, 62oveq12d 6668 . . . . . . . . . 10  |-  ( i  =  1  ->  (
( ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  i
)  -  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  =  ( 1  -  0 ) )
64 1m0e1 11131 . . . . . . . . . 10  |-  ( 1  -  0 )  =  1
6563, 64syl6eq 2672 . . . . . . . . 9  |-  ( i  =  1  ->  (
( ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  i
)  -  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  =  1 )
6665oveq1d 6665 . . . . . . . 8  |-  ( i  =  1  ->  (
( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =  ( 1  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) ) ) )
67 fveq2 6191 . . . . . . . . . . . 12  |-  ( i  =  1  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  =  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
1 ) )
6829, 11axlowdimlem4 25825 . . . . . . . . . . . . . . 15  |-  { <. 1 ,  0 >. , 
<. 2 ,  1
>. } : ( 1 ... 2 ) --> RR
69 ffn 6045 . . . . . . . . . . . . . . 15  |-  ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. } : ( 1 ... 2 ) --> RR  ->  { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  Fn  ( 1 ... 2 ) )
7068, 69ax-mp 5 . . . . . . . . . . . . . 14  |-  { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  Fn  ( 1 ... 2 )
71 fvun1 6269 . . . . . . . . . . . . . 14  |-  ( ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  Fn  (
1 ... 2 )  /\  ( ( 3 ... N )  X.  {
0 } )  Fn  ( 3 ... N
)  /\  ( (
( 1 ... 2
)  i^i  ( 3 ... N ) )  =  (/)  /\  1  e.  ( 1 ... 2
) ) )  -> 
( ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  1
)  =  ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. } `  1
) )
7270, 35, 43, 71mp3an 1424 . . . . . . . . . . . . 13  |-  ( ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
1 )  =  ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. } `  1
)
7347, 58fvpr1 6456 . . . . . . . . . . . . . 14  |-  ( 1  =/=  2  ->  ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. } `  1
)  =  0 )
7446, 73ax-mp 5 . . . . . . . . . . . . 13  |-  ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. } `  1
)  =  0
7572, 74eqtri 2644 . . . . . . . . . . . 12  |-  ( ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
1 )  =  0
7667, 75syl6eq 2672 . . . . . . . . . . 11  |-  ( i  =  1  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  =  0 )
7776, 62oveq12d 6668 . . . . . . . . . 10  |-  ( i  =  1  ->  (
( ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  i
)  -  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  =  ( 0  -  0 ) )
78 0m0e0 11130 . . . . . . . . . 10  |-  ( 0  -  0 )  =  0
7977, 78syl6eq 2672 . . . . . . . . 9  |-  ( i  =  1  ->  (
( ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  i
)  -  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  =  0 )
8079oveq2d 6666 . . . . . . . 8  |-  ( i  =  1  ->  (
( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) ) )  =  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  0 ) )
8166, 80neeq12d 2855 . . . . . . 7  |-  ( i  =  1  ->  (
( ( ( ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =/=  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) ) )  <->  ( 1  x.  ( ( ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) ) )  =/=  (
( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  0 ) ) )
82 fveq2 6191 . . . . . . . . . . . 12  |-  ( j  =  2  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  =  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
2 ) )
8337, 38, 383pm3.2i 1239 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  ZZ )
84 2re 11090 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
8584leidi 10562 . . . . . . . . . . . . . . . . 17  |-  2  <_  2
8618, 85pm3.2i 471 . . . . . . . . . . . . . . . 16  |-  ( 1  <_  2  /\  2  <_  2 )
87 elfz4 12335 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  ZZ )  /\  ( 1  <_  2  /\  2  <_  2 ) )  ->  2  e.  ( 1 ... 2
) )
8883, 86, 87mp2an 708 . . . . . . . . . . . . . . 15  |-  2  e.  ( 1 ... 2
)
8936, 88pm3.2i 471 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... 2
)  i^i  ( 3 ... N ) )  =  (/)  /\  2  e.  ( 1 ... 2
) )
90 fvun1 6269 . . . . . . . . . . . . . 14  |-  ( ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  Fn  (
1 ... 2 )  /\  ( ( 3 ... N )  X.  {
0 } )  Fn  ( 3 ... N
)  /\  ( (
( 1 ... 2
)  i^i  ( 3 ... N ) )  =  (/)  /\  2  e.  ( 1 ... 2
) ) )  -> 
( ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  2
)  =  ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. } `  2
) )
9170, 35, 89, 90mp3an 1424 . . . . . . . . . . . . 13  |-  ( ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
2 )  =  ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. } `  2
)
9238elexi 3213 . . . . . . . . . . . . . . 15  |-  2  e.  _V
9392, 47fvpr2 6457 . . . . . . . . . . . . . 14  |-  ( 1  =/=  2  ->  ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. } `  2
)  =  1 )
9446, 93ax-mp 5 . . . . . . . . . . . . 13  |-  ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. } `  2
)  =  1
9591, 94eqtri 2644 . . . . . . . . . . . 12  |-  ( ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
2 )  =  1
9682, 95syl6eq 2672 . . . . . . . . . . 11  |-  ( j  =  2  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  =  1 )
97 fveq2 6191 . . . . . . . . . . . 12  |-  ( j  =  2  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  =  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
2 ) )
98 fvun1 6269 . . . . . . . . . . . . . 14  |-  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  Fn  (
1 ... 2 )  /\  ( ( 3 ... N )  X.  {
0 } )  Fn  ( 3 ... N
)  /\  ( (
( 1 ... 2
)  i^i  ( 3 ... N ) )  =  (/)  /\  2  e.  ( 1 ... 2
) ) )  -> 
( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  2
)  =  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. } `  2
) )
9955, 35, 89, 98mp3an 1424 . . . . . . . . . . . . 13  |-  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
2 )  =  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. } `  2
)
10092, 58fvpr2 6457 . . . . . . . . . . . . . 14  |-  ( 1  =/=  2  ->  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. } `  2
)  =  0 )
10146, 100ax-mp 5 . . . . . . . . . . . . 13  |-  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. } `  2
)  =  0
10299, 101eqtri 2644 . . . . . . . . . . . 12  |-  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
2 )  =  0
10397, 102syl6eq 2672 . . . . . . . . . . 11  |-  ( j  =  2  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  =  0 )
10496, 103oveq12d 6668 . . . . . . . . . 10  |-  ( j  =  2  ->  (
( ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  j
)  -  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  =  ( 1  -  0 ) )
105104, 64syl6eq 2672 . . . . . . . . 9  |-  ( j  =  2  ->  (
( ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  j
)  -  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  =  1 )
106105oveq2d 6666 . . . . . . . 8  |-  ( j  =  2  ->  (
1  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =  ( 1  x.  1 ) )
107 fveq2 6191 . . . . . . . . . . . 12  |-  ( j  =  2  ->  (
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  =  ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
2 ) )
108 fvun1 6269 . . . . . . . . . . . . . 14  |-  ( ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  Fn  (
1 ... 2 )  /\  ( ( 3 ... N )  X.  {
0 } )  Fn  ( 3 ... N
)  /\  ( (
( 1 ... 2
)  i^i  ( 3 ... N ) )  =  (/)  /\  2  e.  ( 1 ... 2
) ) )  -> 
( ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  2
)  =  ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. } `  2
) )
10932, 35, 89, 108mp3an 1424 . . . . . . . . . . . . 13  |-  ( ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
2 )  =  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. } `  2
)
11092, 58fvpr2 6457 . . . . . . . . . . . . . 14  |-  ( 1  =/=  2  ->  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. } `  2
)  =  0 )
11146, 110ax-mp 5 . . . . . . . . . . . . 13  |-  ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. } `  2
)  =  0
112109, 111eqtri 2644 . . . . . . . . . . . 12  |-  ( ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ` 
2 )  =  0
113107, 112syl6eq 2672 . . . . . . . . . . 11  |-  ( j  =  2  ->  (
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  =  0 )
114113, 103oveq12d 6668 . . . . . . . . . 10  |-  ( j  =  2  ->  (
( ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  j
)  -  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  =  ( 0  -  0 ) )
115114, 78syl6eq 2672 . . . . . . . . 9  |-  ( j  =  2  ->  (
( ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  j
)  -  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  =  0 )
116115oveq1d 6665 . . . . . . . 8  |-  ( j  =  2  ->  (
( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  0 )  =  ( 0  x.  0 ) )
117106, 116neeq12d 2855 . . . . . . 7  |-  ( j  =  2  ->  (
( 1  x.  (
( ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  j
)  -  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =/=  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  0 )  <->  ( 1  x.  1 )  =/=  ( 0  x.  0 ) ) )
11881, 117rspc2ev 3324 . . . . . 6  |-  ( ( 1  e.  ( 1 ... N )  /\  2  e.  ( 1 ... N )  /\  ( 1  x.  1 )  =/=  ( 0  x.  0 ) )  ->  E. i  e.  ( 1 ... N ) E. j  e.  ( 1 ... N ) ( ( ( ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =/=  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) ) ) )
11927, 118mp3an3 1413 . . . . 5  |-  ( ( 1  e.  ( 1 ... N )  /\  2  e.  ( 1 ... N ) )  ->  E. i  e.  ( 1 ... N ) E. j  e.  ( 1 ... N ) ( ( ( ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =/=  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) ) ) )
12015, 21, 119syl2anc 693 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. i  e.  ( 1 ... N
) E. j  e.  ( 1 ... N
) ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) ) )  =/=  (
( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) ) ) )
121 df-ne 2795 . . . . . . . 8  |-  ( ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =/=  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) ) )  <->  -.  (
( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) ) ) )
122121rexbii 3041 . . . . . . 7  |-  ( E. j  e.  ( 1 ... N ) ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =/=  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) ) )  <->  E. j  e.  ( 1 ... N
)  -.  ( ( ( ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) `  i
)  -  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) ) )  =  ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) ) ) )
123 rexnal 2995 . . . . . . 7  |-  ( E. j  e.  ( 1 ... N )  -.  ( ( ( ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) ) )  <->  -.  A. j  e.  ( 1 ... N
) ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) ) )  =  ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) ) ) )
124122, 123bitri 264 . . . . . 6  |-  ( E. j  e.  ( 1 ... N ) ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =/=  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) ) )  <->  -.  A. j  e.  ( 1 ... N
) ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) ) )  =  ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) ) ) )
125124rexbii 3041 . . . . 5  |-  ( E. i  e.  ( 1 ... N ) E. j  e.  ( 1 ... N ) ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =/=  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) ) )  <->  E. i  e.  ( 1 ... N
)  -.  A. j  e.  ( 1 ... N
) ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) ) )  =  ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) ) ) )
126 rexnal 2995 . . . . 5  |-  ( E. i  e.  ( 1 ... N )  -. 
A. j  e.  ( 1 ... N ) ( ( ( ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) ) )  <->  -.  A. i  e.  ( 1 ... N
) A. j  e.  ( 1 ... N
) ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) ) )  =  ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) ) ) )
127125, 126bitri 264 . . . 4  |-  ( E. i  e.  ( 1 ... N ) E. j  e.  ( 1 ... N ) ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) ) )  =/=  ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i ) ) )  <->  -.  A. i  e.  ( 1 ... N
) A. j  e.  ( 1 ... N
) ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) ) )  =  ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) ) ) )
128120, 127sylib 208 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  -.  A. i  e.  ( 1 ... N
) A. j  e.  ( 1 ... N
) ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) ) )  =  ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) ) ) )
12929, 29axlowdimlem5 25826 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  0 >. ,  <. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
13011, 29axlowdimlem5 25826 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  1 >. ,  <. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
13129, 11axlowdimlem5 25826 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  0 >. ,  <. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
132 colinearalg 25790 . . . 4  |-  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  e.  ( EE
`  N )  /\  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  e.  ( EE `  N
)  /\  ( { <. 1 ,  0 >. ,  <. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )  ->  ( (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )  <->  A. i  e.  ( 1 ... N
) A. j  e.  ( 1 ... N
) ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) ) )  =  ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) ) ) ) )
133129, 130, 131, 132syl3anc 1326 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )  <->  A. i  e.  ( 1 ... N
) A. j  e.  ( 1 ... N
) ( ( ( ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) )  x.  ( ( ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) ) )  =  ( ( ( ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  j )  -  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  j ) )  x.  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) `  i )  -  ( ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) `  i ) ) ) ) )
134128, 133mtbird 315 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  -.  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
135 axlowdimlem6.1 . . . 4  |-  A  =  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
136 axlowdimlem6.2 . . . . 5  |-  B  =  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
137 axlowdimlem6.3 . . . . 5  |-  C  =  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
138136, 137opeq12i 4407 . . . 4  |-  <. B ,  C >.  =  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.
139135, 138breq12i 4662 . . 3  |-  ( A 
Btwn  <. B ,  C >.  <-> 
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )
140137, 135opeq12i 4407 . . . 4  |-  <. C ,  A >.  =  <. ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.
141136, 140breq12i 4662 . . 3  |-  ( B 
Btwn  <. C ,  A >.  <-> 
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )
142135, 136opeq12i 4407 . . . 4  |-  <. A ,  B >.  =  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.
143137, 142breq12i 4662 . . 3  |-  ( C 
Btwn  <. A ,  B >.  <-> 
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )
144139, 141, 1433orbi123i 1252 . 2  |-  ( ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. )  <->  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) )
145134, 144sylnibr 319 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  -.  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653    X. cxp 5112    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   3c3 11071   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   EEcee 25768    Btwn cbtwn 25769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-ee 25771  df-btwn 25772
This theorem is referenced by:  axlowdim2  25840  axlowdim  25841
  Copyright terms: Public domain W3C validator