MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abnexg Structured version   Visualization version   Unicode version

Theorem abnexg 6964
Description: Sufficient condition for a class abstraction to be a proper class. The class  F can be thought of as an expression in  x and the abstraction appearing in the statement as the class of values  F as  x varies through  A. Assuming the antecedents, if that class is a set, then so is the "domain"  A. The converse holds without antecedent, see abrexexg 7140. Note that the second antecedent  A. x  e.  A x  e.  F cannot be translated to  A  C_  F since  F may depend on  x. In applications, one may take  F  =  { x } or  F  =  ~P x (see snnex 6966 and pwnex 6968 respectively, proved from abnex 6965, which is a consequence of abnexg 6964 with  A  =  _V). (Contributed by BJ, 2-Dec-2021.)
Assertion
Ref Expression
abnexg  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  ( { y  |  E. x  e.  A  y  =  F }  e.  W  ->  A  e. 
_V ) )
Distinct variable groups:    x, A, y    y, F
Allowed substitution hints:    F( x)    V( x, y)    W( x, y)

Proof of Theorem abnexg
StepHypRef Expression
1 uniexg 6955 . 2  |-  ( { y  |  E. x  e.  A  y  =  F }  e.  W  ->  U. { y  |  E. x  e.  A  y  =  F }  e.  _V )
2 simpl 473 . . . . 5  |-  ( ( F  e.  V  /\  x  e.  F )  ->  F  e.  V )
32ralimi 2952 . . . 4  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  A. x  e.  A  F  e.  V )
4 dfiun2g 4552 . . . . . 6  |-  ( A. x  e.  A  F  e.  V  ->  U_ x  e.  A  F  =  U. { y  |  E. x  e.  A  y  =  F } )
54eleq1d 2686 . . . . 5  |-  ( A. x  e.  A  F  e.  V  ->  ( U_ x  e.  A  F  e.  _V  <->  U. { y  |  E. x  e.  A  y  =  F }  e.  _V ) )
65biimprd 238 . . . 4  |-  ( A. x  e.  A  F  e.  V  ->  ( U. { y  |  E. x  e.  A  y  =  F }  e.  _V  ->  U_ x  e.  A  F  e.  _V )
)
73, 6syl 17 . . 3  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  ( U. { y  |  E. x  e.  A  y  =  F }  e.  _V  ->  U_ x  e.  A  F  e.  _V ) )
8 simpr 477 . . . . 5  |-  ( ( F  e.  V  /\  x  e.  F )  ->  x  e.  F )
98ralimi 2952 . . . 4  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  A. x  e.  A  x  e.  F )
10 iunid 4575 . . . . 5  |-  U_ x  e.  A  { x }  =  A
11 snssi 4339 . . . . . . 7  |-  ( x  e.  F  ->  { x }  C_  F )
1211ralimi 2952 . . . . . 6  |-  ( A. x  e.  A  x  e.  F  ->  A. x  e.  A  { x }  C_  F )
13 ss2iun 4536 . . . . . 6  |-  ( A. x  e.  A  {
x }  C_  F  ->  U_ x  e.  A  { x }  C_  U_ x  e.  A  F
)
1412, 13syl 17 . . . . 5  |-  ( A. x  e.  A  x  e.  F  ->  U_ x  e.  A  { x }  C_  U_ x  e.  A  F )
1510, 14syl5eqssr 3650 . . . 4  |-  ( A. x  e.  A  x  e.  F  ->  A  C_  U_ x  e.  A  F
)
16 ssexg 4804 . . . . 5  |-  ( ( A  C_  U_ x  e.  A  F  /\  U_ x  e.  A  F  e.  _V )  ->  A  e.  _V )
1716ex 450 . . . 4  |-  ( A 
C_  U_ x  e.  A  F  ->  ( U_ x  e.  A  F  e.  _V  ->  A  e.  _V ) )
189, 15, 173syl 18 . . 3  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  ( U_ x  e.  A  F  e.  _V  ->  A  e.  _V )
)
197, 18syld 47 . 2  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  ( U. { y  |  E. x  e.  A  y  =  F }  e.  _V  ->  A  e.  _V ) )
201, 19syl5 34 1  |-  ( A. x  e.  A  ( F  e.  V  /\  x  e.  F )  ->  ( { y  |  E. x  e.  A  y  =  F }  e.  W  ->  A  e. 
_V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   {csn 4177   U.cuni 4436   U_ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-sn 4178  df-uni 4437  df-iun 4522
This theorem is referenced by:  abnex  6965
  Copyright terms: Public domain W3C validator