| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abnex | Structured version Visualization version Unicode version | ||
| Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex 6966 and pwnex 6968. See the comment of abnexg 6964. (Contributed by BJ, 2-May-2021.) |
| Ref | Expression |
|---|---|
| abnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4796 |
. 2
| |
| 2 | alral 2928 |
. . 3
| |
| 3 | rexv 3220 |
. . . . . . 7
| |
| 4 | 3 | bicomi 214 |
. . . . . 6
|
| 5 | 4 | abbii 2739 |
. . . . 5
|
| 6 | 5 | eleq1i 2692 |
. . . 4
|
| 7 | 6 | biimpi 206 |
. . 3
|
| 8 | abnexg 6964 |
. . 3
| |
| 9 | 2, 7, 8 | syl2im 40 |
. 2
|
| 10 | 1, 9 | mtoi 190 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-sn 4178 df-uni 4437 df-iun 4522 |
| This theorem is referenced by: snnex 6966 pwnex 6968 |
| Copyright terms: Public domain | W3C validator |