MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij2 Structured version   Visualization version   Unicode version

Theorem ackbij2 9065
Description: The Ackermann bijection, part 2: hereditarily finite sets can be represented by recursive binary notation. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypotheses
Ref Expression
ackbij.f  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
ackbij.g  |-  G  =  ( x  e.  _V  |->  ( y  e.  ~P dom  x  |->  ( F `  ( x " y
) ) ) )
ackbij.h  |-  H  = 
U. ( rec ( G ,  (/) ) " om )
Assertion
Ref Expression
ackbij2  |-  H : U. ( R1 " om )
-1-1-onto-> om
Distinct variable groups:    x, F, y    x, G, y    x, H, y

Proof of Theorem ackbij2
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6  |-  ( a  =  b  ->  ( rec ( G ,  (/) ) `  a )  =  ( rec ( G ,  (/) ) `  b ) )
2 fvex 6201 . . . . . 6  |-  ( rec ( G ,  (/) ) `  a )  e.  _V
31, 2fun11iun 7126 . . . . 5  |-  ( A. a  e.  om  (
( rec ( G ,  (/) ) `  a
) : ( R1
`  a ) -1-1-> om  /\ 
A. b  e.  om  ( ( rec ( G ,  (/) ) `  a )  C_  ( rec ( G ,  (/) ) `  b )  \/  ( rec ( G ,  (/) ) `  b
)  C_  ( rec ( G ,  (/) ) `  a ) ) )  ->  U_ a  e.  om  ( rec ( G ,  (/) ) `  a ) : U_ a  e. 
om  ( R1 `  a ) -1-1-> om )
4 ackbij.f . . . . . . . . 9  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
5 ackbij.g . . . . . . . . 9  |-  G  =  ( x  e.  _V  |->  ( y  e.  ~P dom  x  |->  ( F `  ( x " y
) ) ) )
64, 5ackbij2lem2 9062 . . . . . . . 8  |-  ( a  e.  om  ->  ( rec ( G ,  (/) ) `  a ) : ( R1 `  a ) -1-1-onto-> ( card `  ( R1 `  a ) ) )
7 f1of1 6136 . . . . . . . 8  |-  ( ( rec ( G ,  (/) ) `  a ) : ( R1 `  a ) -1-1-onto-> ( card `  ( R1 `  a ) )  ->  ( rec ( G ,  (/) ) `  a ) : ( R1 `  a )
-1-1-> ( card `  ( R1 `  a ) ) )
86, 7syl 17 . . . . . . 7  |-  ( a  e.  om  ->  ( rec ( G ,  (/) ) `  a ) : ( R1 `  a ) -1-1-> ( card `  ( R1 `  a
) ) )
9 ordom 7074 . . . . . . . 8  |-  Ord  om
10 r1fin 8636 . . . . . . . . 9  |-  ( a  e.  om  ->  ( R1 `  a )  e. 
Fin )
11 ficardom 8787 . . . . . . . . 9  |-  ( ( R1 `  a )  e.  Fin  ->  ( card `  ( R1 `  a ) )  e. 
om )
1210, 11syl 17 . . . . . . . 8  |-  ( a  e.  om  ->  ( card `  ( R1 `  a ) )  e. 
om )
13 ordelss 5739 . . . . . . . 8  |-  ( ( Ord  om  /\  ( card `  ( R1 `  a ) )  e. 
om )  ->  ( card `  ( R1 `  a ) )  C_  om )
149, 12, 13sylancr 695 . . . . . . 7  |-  ( a  e.  om  ->  ( card `  ( R1 `  a ) )  C_  om )
15 f1ss 6106 . . . . . . 7  |-  ( ( ( rec ( G ,  (/) ) `  a
) : ( R1
`  a ) -1-1-> (
card `  ( R1 `  a ) )  /\  ( card `  ( R1 `  a ) )  C_  om )  ->  ( rec ( G ,  (/) ) `  a ) : ( R1 `  a )
-1-1-> om )
168, 14, 15syl2anc 693 . . . . . 6  |-  ( a  e.  om  ->  ( rec ( G ,  (/) ) `  a ) : ( R1 `  a ) -1-1-> om )
17 nnord 7073 . . . . . . . . 9  |-  ( a  e.  om  ->  Ord  a )
18 nnord 7073 . . . . . . . . 9  |-  ( b  e.  om  ->  Ord  b )
19 ordtri2or2 5823 . . . . . . . . 9  |-  ( ( Ord  a  /\  Ord  b )  ->  (
a  C_  b  \/  b  C_  a ) )
2017, 18, 19syl2an 494 . . . . . . . 8  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( a  C_  b  \/  b  C_  a ) )
214, 5ackbij2lem4 9064 . . . . . . . . . . 11  |-  ( ( ( b  e.  om  /\  a  e.  om )  /\  a  C_  b )  ->  ( rec ( G ,  (/) ) `  a )  C_  ( rec ( G ,  (/) ) `  b )
)
2221ex 450 . . . . . . . . . 10  |-  ( ( b  e.  om  /\  a  e.  om )  ->  ( a  C_  b  ->  ( rec ( G ,  (/) ) `  a
)  C_  ( rec ( G ,  (/) ) `  b ) ) )
2322ancoms 469 . . . . . . . . 9  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( a  C_  b  ->  ( rec ( G ,  (/) ) `  a
)  C_  ( rec ( G ,  (/) ) `  b ) ) )
244, 5ackbij2lem4 9064 . . . . . . . . . 10  |-  ( ( ( a  e.  om  /\  b  e.  om )  /\  b  C_  a )  ->  ( rec ( G ,  (/) ) `  b )  C_  ( rec ( G ,  (/) ) `  a )
)
2524ex 450 . . . . . . . . 9  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( b  C_  a  ->  ( rec ( G ,  (/) ) `  b
)  C_  ( rec ( G ,  (/) ) `  a ) ) )
2623, 25orim12d 883 . . . . . . . 8  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( ( a  C_  b  \/  b  C_  a )  ->  (
( rec ( G ,  (/) ) `  a
)  C_  ( rec ( G ,  (/) ) `  b )  \/  ( rec ( G ,  (/) ) `  b )  C_  ( rec ( G ,  (/) ) `  a
) ) ) )
2720, 26mpd 15 . . . . . . 7  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( ( rec ( G ,  (/) ) `  a )  C_  ( rec ( G ,  (/) ) `  b )  \/  ( rec ( G ,  (/) ) `  b
)  C_  ( rec ( G ,  (/) ) `  a ) ) )
2827ralrimiva 2966 . . . . . 6  |-  ( a  e.  om  ->  A. b  e.  om  ( ( rec ( G ,  (/) ) `  a )  C_  ( rec ( G ,  (/) ) `  b
)  \/  ( rec ( G ,  (/) ) `  b )  C_  ( rec ( G ,  (/) ) `  a
) ) )
2916, 28jca 554 . . . . 5  |-  ( a  e.  om  ->  (
( rec ( G ,  (/) ) `  a
) : ( R1
`  a ) -1-1-> om  /\ 
A. b  e.  om  ( ( rec ( G ,  (/) ) `  a )  C_  ( rec ( G ,  (/) ) `  b )  \/  ( rec ( G ,  (/) ) `  b
)  C_  ( rec ( G ,  (/) ) `  a ) ) ) )
303, 29mprg 2926 . . . 4  |-  U_ a  e.  om  ( rec ( G ,  (/) ) `  a ) : U_ a  e.  om  ( R1 `  a ) -1-1-> om
31 rdgfun 7512 . . . . . 6  |-  Fun  rec ( G ,  (/) )
32 funiunfv 6506 . . . . . . 7  |-  ( Fun 
rec ( G ,  (/) )  ->  U_ a  e. 
om  ( rec ( G ,  (/) ) `  a )  =  U. ( rec ( G ,  (/) ) " om )
)
3332eqcomd 2628 . . . . . 6  |-  ( Fun 
rec ( G ,  (/) )  ->  U. ( rec ( G ,  (/) ) " om )  = 
U_ a  e.  om  ( rec ( G ,  (/) ) `  a ) )
34 f1eq1 6096 . . . . . 6  |-  ( U. ( rec ( G ,  (/) ) " om )  =  U_ a  e.  om  ( rec ( G ,  (/) ) `  a )  ->  ( U. ( rec ( G ,  (/) ) " om ) : U. ( R1 " om ) -1-1-> om  <->  U_ a  e.  om  ( rec ( G ,  (/) ) `  a ) : U. ( R1
" om ) -1-1-> om ) )
3531, 33, 34mp2b 10 . . . . 5  |-  ( U. ( rec ( G ,  (/) ) " om ) : U. ( R1 " om ) -1-1-> om  <->  U_ a  e.  om  ( rec ( G ,  (/) ) `  a ) : U. ( R1
" om ) -1-1-> om )
36 r1funlim 8629 . . . . . . 7  |-  ( Fun 
R1  /\  Lim  dom  R1 )
3736simpli 474 . . . . . 6  |-  Fun  R1
38 funiunfv 6506 . . . . . 6  |-  ( Fun 
R1  ->  U_ a  e.  om  ( R1 `  a )  =  U. ( R1
" om ) )
39 f1eq2 6097 . . . . . 6  |-  ( U_ a  e.  om  ( R1 `  a )  = 
U. ( R1 " om )  ->  ( U_ a  e.  om  ( rec ( G ,  (/) ) `  a ) : U_ a  e.  om  ( R1 `  a )
-1-1-> om  <->  U_ a  e.  om  ( rec ( G ,  (/) ) `  a ) : U. ( R1
" om ) -1-1-> om ) )
4037, 38, 39mp2b 10 . . . . 5  |-  ( U_ a  e.  om  ( rec ( G ,  (/) ) `  a ) : U_ a  e.  om  ( R1 `  a )
-1-1-> om  <->  U_ a  e.  om  ( rec ( G ,  (/) ) `  a ) : U. ( R1
" om ) -1-1-> om )
4135, 40bitr4i 267 . . . 4  |-  ( U. ( rec ( G ,  (/) ) " om ) : U. ( R1 " om ) -1-1-> om  <->  U_ a  e.  om  ( rec ( G ,  (/) ) `  a ) : U_ a  e. 
om  ( R1 `  a ) -1-1-> om )
4230, 41mpbir 221 . . 3  |-  U. ( rec ( G ,  (/) ) " om ) : U. ( R1 " om ) -1-1-> om
43 rnuni 5544 . . . 4  |-  ran  U. ( rec ( G ,  (/) ) " om )  =  U_ a  e.  ( rec ( G ,  (/) ) " om ) ran  a
44 eliun 4524 . . . . . 6  |-  ( b  e.  U_ a  e.  ( rec ( G ,  (/) ) " om ) ran  a  <->  E. a  e.  ( rec ( G ,  (/) ) " om ) b  e.  ran  a )
45 df-rex 2918 . . . . . 6  |-  ( E. a  e.  ( rec ( G ,  (/) ) " om ) b  e.  ran  a  <->  E. a
( a  e.  ( rec ( G ,  (/) ) " om )  /\  b  e.  ran  a ) )
46 funfn 5918 . . . . . . . . . . . 12  |-  ( Fun 
rec ( G ,  (/) )  <->  rec ( G ,  (/) )  Fn  dom  rec ( G ,  (/) ) )
4731, 46mpbi 220 . . . . . . . . . . 11  |-  rec ( G ,  (/) )  Fn 
dom  rec ( G ,  (/) )
48 rdgdmlim 7513 . . . . . . . . . . . 12  |-  Lim  dom  rec ( G ,  (/) )
49 limomss 7070 . . . . . . . . . . . 12  |-  ( Lim 
dom  rec ( G ,  (/) )  ->  om  C_  dom  rec ( G ,  (/) ) )
5048, 49ax-mp 5 . . . . . . . . . . 11  |-  om  C_  dom  rec ( G ,  (/) )
51 fvelimab 6253 . . . . . . . . . . 11  |-  ( ( rec ( G ,  (/) )  Fn  dom  rec ( G ,  (/) )  /\  om  C_  dom  rec ( G ,  (/) ) )  -> 
( a  e.  ( rec ( G ,  (/) ) " om )  <->  E. c  e.  om  ( rec ( G ,  (/) ) `  c )  =  a ) )
5247, 50, 51mp2an 708 . . . . . . . . . 10  |-  ( a  e.  ( rec ( G ,  (/) ) " om )  <->  E. c  e.  om  ( rec ( G ,  (/) ) `  c )  =  a )
534, 5ackbij2lem2 9062 . . . . . . . . . . . . . 14  |-  ( c  e.  om  ->  ( rec ( G ,  (/) ) `  c ) : ( R1 `  c ) -1-1-onto-> ( card `  ( R1 `  c ) ) )
54 f1ofo 6144 . . . . . . . . . . . . . 14  |-  ( ( rec ( G ,  (/) ) `  c ) : ( R1 `  c ) -1-1-onto-> ( card `  ( R1 `  c ) )  ->  ( rec ( G ,  (/) ) `  c ) : ( R1 `  c )
-onto-> ( card `  ( R1 `  c ) ) )
55 forn 6118 . . . . . . . . . . . . . 14  |-  ( ( rec ( G ,  (/) ) `  c ) : ( R1 `  c ) -onto-> ( card `  ( R1 `  c
) )  ->  ran  ( rec ( G ,  (/) ) `  c )  =  ( card `  ( R1 `  c ) ) )
5653, 54, 553syl 18 . . . . . . . . . . . . 13  |-  ( c  e.  om  ->  ran  ( rec ( G ,  (/) ) `  c )  =  ( card `  ( R1 `  c ) ) )
57 r1fin 8636 . . . . . . . . . . . . . . 15  |-  ( c  e.  om  ->  ( R1 `  c )  e. 
Fin )
58 ficardom 8787 . . . . . . . . . . . . . . 15  |-  ( ( R1 `  c )  e.  Fin  ->  ( card `  ( R1 `  c ) )  e. 
om )
5957, 58syl 17 . . . . . . . . . . . . . 14  |-  ( c  e.  om  ->  ( card `  ( R1 `  c ) )  e. 
om )
60 ordelss 5739 . . . . . . . . . . . . . 14  |-  ( ( Ord  om  /\  ( card `  ( R1 `  c ) )  e. 
om )  ->  ( card `  ( R1 `  c ) )  C_  om )
619, 59, 60sylancr 695 . . . . . . . . . . . . 13  |-  ( c  e.  om  ->  ( card `  ( R1 `  c ) )  C_  om )
6256, 61eqsstrd 3639 . . . . . . . . . . . 12  |-  ( c  e.  om  ->  ran  ( rec ( G ,  (/) ) `  c ) 
C_  om )
63 rneq 5351 . . . . . . . . . . . . 13  |-  ( ( rec ( G ,  (/) ) `  c )  =  a  ->  ran  ( rec ( G ,  (/) ) `  c )  =  ran  a )
6463sseq1d 3632 . . . . . . . . . . . 12  |-  ( ( rec ( G ,  (/) ) `  c )  =  a  ->  ( ran  ( rec ( G ,  (/) ) `  c
)  C_  om  <->  ran  a  C_  om ) )
6562, 64syl5ibcom 235 . . . . . . . . . . 11  |-  ( c  e.  om  ->  (
( rec ( G ,  (/) ) `  c
)  =  a  ->  ran  a  C_  om )
)
6665rexlimiv 3027 . . . . . . . . . 10  |-  ( E. c  e.  om  ( rec ( G ,  (/) ) `  c )  =  a  ->  ran  a  C_ 
om )
6752, 66sylbi 207 . . . . . . . . 9  |-  ( a  e.  ( rec ( G ,  (/) ) " om )  ->  ran  a  C_ 
om )
6867sselda 3603 . . . . . . . 8  |-  ( ( a  e.  ( rec ( G ,  (/) ) " om )  /\  b  e.  ran  a )  ->  b  e.  om )
6968exlimiv 1858 . . . . . . 7  |-  ( E. a ( a  e.  ( rec ( G ,  (/) ) " om )  /\  b  e.  ran  a )  ->  b  e.  om )
70 peano2 7086 . . . . . . . . 9  |-  ( b  e.  om  ->  suc  b  e.  om )
71 fnfvima 6496 . . . . . . . . . 10  |-  ( ( rec ( G ,  (/) )  Fn  dom  rec ( G ,  (/) )  /\  om  C_  dom  rec ( G ,  (/) )  /\  suc  b  e.  om )  ->  ( rec ( G ,  (/) ) `  suc  b )  e.  ( rec ( G ,  (/) ) " om )
)
7247, 50, 71mp3an12 1414 . . . . . . . . 9  |-  ( suc  b  e.  om  ->  ( rec ( G ,  (/) ) `  suc  b
)  e.  ( rec ( G ,  (/) ) " om ) )
7370, 72syl 17 . . . . . . . 8  |-  ( b  e.  om  ->  ( rec ( G ,  (/) ) `  suc  b )  e.  ( rec ( G ,  (/) ) " om ) )
74 vex 3203 . . . . . . . . . 10  |-  b  e. 
_V
75 cardnn 8789 . . . . . . . . . . . 12  |-  ( suc  b  e.  om  ->  (
card `  suc  b )  =  suc  b )
76 fvex 6201 . . . . . . . . . . . . . 14  |-  ( R1
`  suc  b )  e.  _V
7736simpri 478 . . . . . . . . . . . . . . . . 17  |-  Lim  dom  R1
78 limomss 7070 . . . . . . . . . . . . . . . . 17  |-  ( Lim 
dom  R1  ->  om  C_  dom  R1 )
7977, 78ax-mp 5 . . . . . . . . . . . . . . . 16  |-  om  C_  dom  R1
8079sseli 3599 . . . . . . . . . . . . . . 15  |-  ( suc  b  e.  om  ->  suc  b  e.  dom  R1 )
81 onssr1 8694 . . . . . . . . . . . . . . 15  |-  ( suc  b  e.  dom  R1  ->  suc  b  C_  ( R1 `  suc  b ) )
8280, 81syl 17 . . . . . . . . . . . . . 14  |-  ( suc  b  e.  om  ->  suc  b  C_  ( R1 ` 
suc  b ) )
83 ssdomg 8001 . . . . . . . . . . . . . 14  |-  ( ( R1 `  suc  b
)  e.  _V  ->  ( suc  b  C_  ( R1 `  suc  b )  ->  suc  b  ~<_  ( R1
`  suc  b )
) )
8476, 82, 83mpsyl 68 . . . . . . . . . . . . 13  |-  ( suc  b  e.  om  ->  suc  b  ~<_  ( R1 `  suc  b ) )
85 nnon 7071 . . . . . . . . . . . . . . 15  |-  ( suc  b  e.  om  ->  suc  b  e.  On )
86 onenon 8775 . . . . . . . . . . . . . . 15  |-  ( suc  b  e.  On  ->  suc  b  e.  dom  card )
8785, 86syl 17 . . . . . . . . . . . . . 14  |-  ( suc  b  e.  om  ->  suc  b  e.  dom  card )
88 r1fin 8636 . . . . . . . . . . . . . . 15  |-  ( suc  b  e.  om  ->  ( R1 `  suc  b
)  e.  Fin )
89 finnum 8774 . . . . . . . . . . . . . . 15  |-  ( ( R1 `  suc  b
)  e.  Fin  ->  ( R1 `  suc  b
)  e.  dom  card )
9088, 89syl 17 . . . . . . . . . . . . . 14  |-  ( suc  b  e.  om  ->  ( R1 `  suc  b
)  e.  dom  card )
91 carddom2 8803 . . . . . . . . . . . . . 14  |-  ( ( suc  b  e.  dom  card  /\  ( R1 `  suc  b )  e.  dom  card )  ->  ( ( card `  suc  b ) 
C_  ( card `  ( R1 `  suc  b ) )  <->  suc  b  ~<_  ( R1
`  suc  b )
) )
9287, 90, 91syl2anc 693 . . . . . . . . . . . . 13  |-  ( suc  b  e.  om  ->  ( ( card `  suc  b )  C_  ( card `  ( R1 `  suc  b ) )  <->  suc  b  ~<_  ( R1 `  suc  b
) ) )
9384, 92mpbird 247 . . . . . . . . . . . 12  |-  ( suc  b  e.  om  ->  (
card `  suc  b ) 
C_  ( card `  ( R1 `  suc  b ) ) )
9475, 93eqsstr3d 3640 . . . . . . . . . . 11  |-  ( suc  b  e.  om  ->  suc  b  C_  ( card `  ( R1 `  suc  b ) ) )
9570, 94syl 17 . . . . . . . . . 10  |-  ( b  e.  om  ->  suc  b  C_  ( card `  ( R1 `  suc  b ) ) )
96 sucssel 5819 . . . . . . . . . 10  |-  ( b  e.  _V  ->  ( suc  b  C_  ( card `  ( R1 `  suc  b ) )  -> 
b  e.  ( card `  ( R1 `  suc  b ) ) ) )
9774, 95, 96mpsyl 68 . . . . . . . . 9  |-  ( b  e.  om  ->  b  e.  ( card `  ( R1 `  suc  b ) ) )
984, 5ackbij2lem2 9062 . . . . . . . . . 10  |-  ( suc  b  e.  om  ->  ( rec ( G ,  (/) ) `  suc  b
) : ( R1
`  suc  b ) -1-1-onto-> ( card `  ( R1 `  suc  b ) ) )
99 f1ofo 6144 . . . . . . . . . 10  |-  ( ( rec ( G ,  (/) ) `  suc  b
) : ( R1
`  suc  b ) -1-1-onto-> ( card `  ( R1 `  suc  b ) )  -> 
( rec ( G ,  (/) ) `  suc  b ) : ( R1 `  suc  b
) -onto-> ( card `  ( R1 `  suc  b ) ) )
100 forn 6118 . . . . . . . . . 10  |-  ( ( rec ( G ,  (/) ) `  suc  b
) : ( R1
`  suc  b ) -onto->
( card `  ( R1 ` 
suc  b ) )  ->  ran  ( rec ( G ,  (/) ) `  suc  b )  =  (
card `  ( R1 ` 
suc  b ) ) )
10170, 98, 99, 1004syl 19 . . . . . . . . 9  |-  ( b  e.  om  ->  ran  ( rec ( G ,  (/) ) `  suc  b
)  =  ( card `  ( R1 `  suc  b ) ) )
10297, 101eleqtrrd 2704 . . . . . . . 8  |-  ( b  e.  om  ->  b  e.  ran  ( rec ( G ,  (/) ) `  suc  b ) )
103 fvex 6201 . . . . . . . . 9  |-  ( rec ( G ,  (/) ) `  suc  b )  e.  _V
104 eleq1 2689 . . . . . . . . . 10  |-  ( a  =  ( rec ( G ,  (/) ) `  suc  b )  ->  (
a  e.  ( rec ( G ,  (/) ) " om )  <->  ( rec ( G ,  (/) ) `  suc  b )  e.  ( rec ( G ,  (/) ) " om )
) )
105 rneq 5351 . . . . . . . . . . 11  |-  ( a  =  ( rec ( G ,  (/) ) `  suc  b )  ->  ran  a  =  ran  ( rec ( G ,  (/) ) `  suc  b ) )
106105eleq2d 2687 . . . . . . . . . 10  |-  ( a  =  ( rec ( G ,  (/) ) `  suc  b )  ->  (
b  e.  ran  a  <->  b  e.  ran  ( rec ( G ,  (/) ) `  suc  b ) ) )
107104, 106anbi12d 747 . . . . . . . . 9  |-  ( a  =  ( rec ( G ,  (/) ) `  suc  b )  ->  (
( a  e.  ( rec ( G ,  (/) ) " om )  /\  b  e.  ran  a )  <->  ( ( rec ( G ,  (/) ) `  suc  b )  e.  ( rec ( G ,  (/) ) " om )  /\  b  e.  ran  ( rec ( G ,  (/) ) `  suc  b ) ) ) )
108103, 107spcev 3300 . . . . . . . 8  |-  ( ( ( rec ( G ,  (/) ) `  suc  b )  e.  ( rec ( G ,  (/) ) " om )  /\  b  e.  ran  ( rec ( G ,  (/) ) `  suc  b
) )  ->  E. a
( a  e.  ( rec ( G ,  (/) ) " om )  /\  b  e.  ran  a ) )
10973, 102, 108syl2anc 693 . . . . . . 7  |-  ( b  e.  om  ->  E. a
( a  e.  ( rec ( G ,  (/) ) " om )  /\  b  e.  ran  a ) )
11069, 109impbii 199 . . . . . 6  |-  ( E. a ( a  e.  ( rec ( G ,  (/) ) " om )  /\  b  e.  ran  a )  <->  b  e.  om )
11144, 45, 1103bitri 286 . . . . 5  |-  ( b  e.  U_ a  e.  ( rec ( G ,  (/) ) " om ) ran  a  <->  b  e.  om )
112111eqriv 2619 . . . 4  |-  U_ a  e.  ( rec ( G ,  (/) ) " om ) ran  a  =  om
11343, 112eqtri 2644 . . 3  |-  ran  U. ( rec ( G ,  (/) ) " om )  =  om
114 dff1o5 6146 . . 3  |-  ( U. ( rec ( G ,  (/) ) " om ) : U. ( R1 " om ) -1-1-onto-> om  <->  ( U. ( rec ( G ,  (/) ) " om ) : U. ( R1 " om ) -1-1-> om  /\  ran  U. ( rec ( G ,  (/) ) " om )  =  om ) )
11542, 113, 114mpbir2an 955 . 2  |-  U. ( rec ( G ,  (/) ) " om ) : U. ( R1 " om ) -1-1-onto-> om
116 ackbij.h . . 3  |-  H  = 
U. ( rec ( G ,  (/) ) " om )
117 f1oeq1 6127 . . 3  |-  ( H  =  U. ( rec ( G ,  (/) ) " om )  -> 
( H : U. ( R1 " om ) -1-1-onto-> om  <->  U. ( rec ( G ,  (/) ) " om ) : U. ( R1
" om ) -1-1-onto-> om )
)
118116, 117ax-mp 5 . 2  |-  ( H : U. ( R1
" om ) -1-1-onto-> om  <->  U. ( rec ( G ,  (/) ) " om ) : U. ( R1 " om ) -1-1-onto-> om )
119115, 118mpbir 221 1  |-  H : U. ( R1 " om )
-1-1-onto-> om
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115   "cima 5117   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888   omcom 7065   reccrdg 7505    ~<_ cdom 7953   Fincfn 7955   R1cr1 8625   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-r1 8627  df-rank 8628  df-card 8765  df-cda 8990
This theorem is referenced by:  r1om  9066
  Copyright terms: Public domain W3C validator