Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongeq12d Structured version   Visualization version   Unicode version

Theorem acongeq12d 37546
Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014.)
Hypotheses
Ref Expression
acongeq12d.1  |-  ( ph  ->  B  =  C )
acongeq12d.2  |-  ( ph  ->  D  =  E )
Assertion
Ref Expression
acongeq12d  |-  ( ph  ->  ( ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) )  <->  ( A  ||  ( C  -  E
)  \/  A  ||  ( C  -  -u E
) ) ) )

Proof of Theorem acongeq12d
StepHypRef Expression
1 acongeq12d.1 . . . 4  |-  ( ph  ->  B  =  C )
2 acongeq12d.2 . . . 4  |-  ( ph  ->  D  =  E )
31, 2oveq12d 6668 . . 3  |-  ( ph  ->  ( B  -  D
)  =  ( C  -  E ) )
43breq2d 4665 . 2  |-  ( ph  ->  ( A  ||  ( B  -  D )  <->  A 
||  ( C  -  E ) ) )
52negeqd 10275 . . . 4  |-  ( ph  -> 
-u D  =  -u E )
61, 5oveq12d 6668 . . 3  |-  ( ph  ->  ( B  -  -u D
)  =  ( C  -  -u E ) )
76breq2d 4665 . 2  |-  ( ph  ->  ( A  ||  ( B  -  -u D )  <-> 
A  ||  ( C  -  -u E ) ) )
84, 7orbi12d 746 1  |-  ( ph  ->  ( ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) )  <->  ( A  ||  ( C  -  E
)  \/  A  ||  ( C  -  -u E
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    = wceq 1483   class class class wbr 4653  (class class class)co 6650    - cmin 10266   -ucneg 10267    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-neg 10269
This theorem is referenced by:  acongrep  37547  jm2.26a  37567  jm2.26  37569
  Copyright terms: Public domain W3C validator