Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongtr Structured version   Visualization version   Unicode version

Theorem acongtr 37545
Description: Transitivity of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongtr  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ )  /\  (
( A  ||  ( B  -  C )  \/  A  ||  ( B  -  -u C ) )  /\  ( A  ||  ( C  -  D
)  \/  A  ||  ( C  -  -u D
) ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )

Proof of Theorem acongtr
StepHypRef Expression
1 congtr 37532 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  D
) ) )  ->  A  ||  ( B  -  D ) )
213expa 1265 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  D ) ) )  ->  A  ||  ( B  -  D )
)
32orcd 407 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  D ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
43ex 450 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  C
)  /\  A  ||  ( C  -  D )
)  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) ) )
5 simpll 790 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
6 znegcl 11412 . . . . . . . 8  |-  ( C  e.  ZZ  ->  -u C  e.  ZZ )
7 znegcl 11412 . . . . . . . 8  |-  ( D  e.  ZZ  ->  -u D  e.  ZZ )
86, 7anim12i 590 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u C  e.  ZZ  /\  -u D  e.  ZZ ) )
98ad2antlr 763 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  ( -u C  e.  ZZ  /\  -u D  e.  ZZ ) )
10 simplll 798 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  A  e.  ZZ )
11 simplrl 800 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  C  e.  ZZ )
12 simplrr 801 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  D  e.  ZZ )
13 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  A  ||  ( C  -  D ) )
14 congsym 37535 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  A  ||  ( C  -  D
) ) )  ->  A  ||  ( D  -  C ) )
1510, 11, 12, 13, 14syl22anc 1327 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  D ) )  ->  A  ||  ( D  -  C ) )
1615ex 450 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( C  -  D )  ->  A  ||  ( D  -  C ) ) )
17 zcn 11382 . . . . . . . . . . . . . 14  |-  ( C  e.  ZZ  ->  C  e.  CC )
1817adantr 481 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  C  e.  CC )
19 zcn 11382 . . . . . . . . . . . . . 14  |-  ( D  e.  ZZ  ->  D  e.  CC )
2019adantl 482 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  D  e.  CC )
2118, 20neg2subd 10409 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u C  -  -u D )  =  ( D  -  C ) )
2221adantl 482 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( -u C  -  -u D
)  =  ( D  -  C ) )
2322eqcomd 2628 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( D  -  C
)  =  ( -u C  -  -u D ) )
2423breq2d 4665 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( D  -  C )  <->  A 
||  ( -u C  -  -u D ) ) )
2516, 24sylibd 229 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( C  -  D )  ->  A  ||  ( -u C  -  -u D ) ) )
2625anim2d 589 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  -u C
)  /\  A  ||  ( C  -  D )
)  ->  ( A  ||  ( B  -  -u C
)  /\  A  ||  ( -u C  -  -u D
) ) ) )
2726imp 445 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  ( A  ||  ( B  -  -u C
)  /\  A  ||  ( -u C  -  -u D
) ) )
28 congtr 37532 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -u C  e.  ZZ  /\  -u D  e.  ZZ )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( -u C  -  -u D ) ) )  ->  A  ||  ( B  -  -u D ) )
295, 9, 27, 28syl3anc 1326 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  A  ||  ( B  -  -u D ) )
3029olcd 408 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  D ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
3130ex 450 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  -u C
)  /\  A  ||  ( C  -  D )
)  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) ) )
32 simpll 790 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
337anim2i 593 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( C  e.  ZZ  /\  -u D  e.  ZZ ) )
3433ad2antlr 763 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( C  e.  ZZ  /\  -u D  e.  ZZ ) )
35 simpr 477 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  ||  ( B  -  C
)  /\  A  ||  ( C  -  -u D ) ) )
36 congtr 37532 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  -u D  e.  ZZ )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D
) ) )  ->  A  ||  ( B  -  -u D ) )
3732, 34, 35, 36syl3anc 1326 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  A  ||  ( B  -  -u D ) )
3837olcd 408 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
3938ex 450 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  C
)  /\  A  ||  ( C  -  -u D ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) ) )
40 simpll 790 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
416anim1i 592 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u C  e.  ZZ  /\  D  e.  ZZ ) )
4241ad2antlr 763 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( -u C  e.  ZZ  /\  D  e.  ZZ ) )
43 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  D  e.  ZZ )  ->  A  e.  ZZ )
44 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  ZZ )
4543, 44anim12i 590 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  D  e.  ZZ )  /\  ( B  e.  ZZ  /\  C  e.  ZZ ) )  -> 
( A  e.  ZZ  /\  C  e.  ZZ ) )
4645an42s 870 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  e.  ZZ  /\  C  e.  ZZ ) )
4746adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  -u D ) )  -> 
( A  e.  ZZ  /\  C  e.  ZZ ) )
487adantl 482 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  -> 
-u D  e.  ZZ )
4948ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  -u D ) )  ->  -u D  e.  ZZ )
50 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  -u D ) )  ->  A  ||  ( C  -  -u D ) )
51 congsym 37535 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  C  e.  ZZ )  /\  ( -u D  e.  ZZ  /\  A  ||  ( C  -  -u D
) ) )  ->  A  ||  ( -u D  -  C ) )
5247, 49, 50, 51syl12anc 1324 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  A  ||  ( C  -  -u D ) )  ->  A  ||  ( -u D  -  C ) )
5352ex 450 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( C  -  -u D )  ->  A  ||  ( -u D  -  C ) ) )
5418negnegd 10383 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  -> 
-u -u C  =  C )
5554oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u D  -  -u -u C )  =  (
-u D  -  C
) )
56 zcn 11382 . . . . . . . . . . . . . . 15  |-  ( -u C  e.  ZZ  ->  -u C  e.  CC )
5756adantr 481 . . . . . . . . . . . . . 14  |-  ( (
-u C  e.  ZZ  /\  -u D  e.  ZZ )  ->  -u C  e.  CC )
588, 57syl 17 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  -> 
-u C  e.  CC )
5920, 58neg2subd 10409 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u D  -  -u -u C )  =  (
-u C  -  D
) )
6055, 59eqtr3d 2658 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( -u D  -  C )  =  (
-u C  -  D
) )
6160adantl 482 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( -u D  -  C
)  =  ( -u C  -  D )
)
6261breq2d 4665 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( -u D  -  C )  <-> 
A  ||  ( -u C  -  D ) ) )
6353, 62sylibd 229 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( A  ||  ( C  -  -u D )  ->  A  ||  ( -u C  -  D ) ) )
6463anim2d 589 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  -u C
)  /\  A  ||  ( C  -  -u D ) )  ->  ( A  ||  ( B  -  -u C
)  /\  A  ||  ( -u C  -  D ) ) ) )
6564imp 445 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  ||  ( B  -  -u C
)  /\  A  ||  ( -u C  -  D ) ) )
66 congtr 37532 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -u C  e.  ZZ  /\  D  e.  ZZ )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( -u C  -  D ) ) )  ->  A  ||  ( B  -  D )
)
6740, 42, 65, 66syl3anc 1326 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  A  ||  ( B  -  D )
)
6867orcd 407 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  /\  ( A  ||  ( B  -  -u C )  /\  A  ||  ( C  -  -u D ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
6968ex 450 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( A  ||  ( B  -  -u C
)  /\  A  ||  ( C  -  -u D ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) ) )
704, 31, 39, 69ccased 988 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ ) )  -> 
( ( ( A 
||  ( B  -  C )  \/  A  ||  ( B  -  -u C
) )  /\  ( A  ||  ( C  -  D )  \/  A  ||  ( C  -  -u D
) ) )  -> 
( A  ||  ( B  -  D )  \/  A  ||  ( B  -  -u D ) ) ) )
71703impia 1261 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  ZZ  /\  D  e.  ZZ )  /\  (
( A  ||  ( B  -  C )  \/  A  ||  ( B  -  -u C ) )  /\  ( A  ||  ( C  -  D
)  \/  A  ||  ( C  -  -u D
) ) ) )  ->  ( A  ||  ( B  -  D
)  \/  A  ||  ( B  -  -u D
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934    - cmin 10266   -ucneg 10267   ZZcz 11377    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-dvds 14984
This theorem is referenced by:  jm2.25lem1  37565  jm2.26  37569  jm2.27a  37572
  Copyright terms: Public domain W3C validator