| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > acongtr | Structured version Visualization version Unicode version | ||
| Description: Transitivity of alternating congruence. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
| Ref | Expression |
|---|---|
| acongtr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | congtr 37532 |
. . . . . 6
| |
| 2 | 1 | 3expa 1265 |
. . . . 5
|
| 3 | 2 | orcd 407 |
. . . 4
|
| 4 | 3 | ex 450 |
. . 3
|
| 5 | simpll 790 |
. . . . . 6
| |
| 6 | znegcl 11412 |
. . . . . . . 8
| |
| 7 | znegcl 11412 |
. . . . . . . 8
| |
| 8 | 6, 7 | anim12i 590 |
. . . . . . 7
|
| 9 | 8 | ad2antlr 763 |
. . . . . 6
|
| 10 | simplll 798 |
. . . . . . . . . . 11
| |
| 11 | simplrl 800 |
. . . . . . . . . . 11
| |
| 12 | simplrr 801 |
. . . . . . . . . . 11
| |
| 13 | simpr 477 |
. . . . . . . . . . 11
| |
| 14 | congsym 37535 |
. . . . . . . . . . 11
| |
| 15 | 10, 11, 12, 13, 14 | syl22anc 1327 |
. . . . . . . . . 10
|
| 16 | 15 | ex 450 |
. . . . . . . . 9
|
| 17 | zcn 11382 |
. . . . . . . . . . . . . 14
| |
| 18 | 17 | adantr 481 |
. . . . . . . . . . . . 13
|
| 19 | zcn 11382 |
. . . . . . . . . . . . . 14
| |
| 20 | 19 | adantl 482 |
. . . . . . . . . . . . 13
|
| 21 | 18, 20 | neg2subd 10409 |
. . . . . . . . . . . 12
|
| 22 | 21 | adantl 482 |
. . . . . . . . . . 11
|
| 23 | 22 | eqcomd 2628 |
. . . . . . . . . 10
|
| 24 | 23 | breq2d 4665 |
. . . . . . . . 9
|
| 25 | 16, 24 | sylibd 229 |
. . . . . . . 8
|
| 26 | 25 | anim2d 589 |
. . . . . . 7
|
| 27 | 26 | imp 445 |
. . . . . 6
|
| 28 | congtr 37532 |
. . . . . 6
| |
| 29 | 5, 9, 27, 28 | syl3anc 1326 |
. . . . 5
|
| 30 | 29 | olcd 408 |
. . . 4
|
| 31 | 30 | ex 450 |
. . 3
|
| 32 | simpll 790 |
. . . . . 6
| |
| 33 | 7 | anim2i 593 |
. . . . . . 7
|
| 34 | 33 | ad2antlr 763 |
. . . . . 6
|
| 35 | simpr 477 |
. . . . . 6
| |
| 36 | congtr 37532 |
. . . . . 6
| |
| 37 | 32, 34, 35, 36 | syl3anc 1326 |
. . . . 5
|
| 38 | 37 | olcd 408 |
. . . 4
|
| 39 | 38 | ex 450 |
. . 3
|
| 40 | simpll 790 |
. . . . . 6
| |
| 41 | 6 | anim1i 592 |
. . . . . . 7
|
| 42 | 41 | ad2antlr 763 |
. . . . . 6
|
| 43 | simpl 473 |
. . . . . . . . . . . . . 14
| |
| 44 | simpr 477 |
. . . . . . . . . . . . . 14
| |
| 45 | 43, 44 | anim12i 590 |
. . . . . . . . . . . . 13
|
| 46 | 45 | an42s 870 |
. . . . . . . . . . . 12
|
| 47 | 46 | adantr 481 |
. . . . . . . . . . 11
|
| 48 | 7 | adantl 482 |
. . . . . . . . . . . 12
|
| 49 | 48 | ad2antlr 763 |
. . . . . . . . . . 11
|
| 50 | simpr 477 |
. . . . . . . . . . 11
| |
| 51 | congsym 37535 |
. . . . . . . . . . 11
| |
| 52 | 47, 49, 50, 51 | syl12anc 1324 |
. . . . . . . . . 10
|
| 53 | 52 | ex 450 |
. . . . . . . . 9
|
| 54 | 18 | negnegd 10383 |
. . . . . . . . . . . . 13
|
| 55 | 54 | oveq2d 6666 |
. . . . . . . . . . . 12
|
| 56 | zcn 11382 |
. . . . . . . . . . . . . . 15
| |
| 57 | 56 | adantr 481 |
. . . . . . . . . . . . . 14
|
| 58 | 8, 57 | syl 17 |
. . . . . . . . . . . . 13
|
| 59 | 20, 58 | neg2subd 10409 |
. . . . . . . . . . . 12
|
| 60 | 55, 59 | eqtr3d 2658 |
. . . . . . . . . . 11
|
| 61 | 60 | adantl 482 |
. . . . . . . . . 10
|
| 62 | 61 | breq2d 4665 |
. . . . . . . . 9
|
| 63 | 53, 62 | sylibd 229 |
. . . . . . . 8
|
| 64 | 63 | anim2d 589 |
. . . . . . 7
|
| 65 | 64 | imp 445 |
. . . . . 6
|
| 66 | congtr 37532 |
. . . . . 6
| |
| 67 | 40, 42, 65, 66 | syl3anc 1326 |
. . . . 5
|
| 68 | 67 | orcd 407 |
. . . 4
|
| 69 | 68 | ex 450 |
. . 3
|
| 70 | 4, 31, 39, 69 | ccased 988 |
. 2
|
| 71 | 70 | 3impia 1261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-dvds 14984 |
| This theorem is referenced by: jm2.25lem1 37565 jm2.26 37569 jm2.27a 37572 |
| Copyright terms: Public domain | W3C validator |