| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fntpb | Structured version Visualization version Unicode version | ||
| Description: A function whose domain has at most three elements can be represented as a set of at most three ordered pairs. (Contributed by AV, 26-Jan-2021.) |
| Ref | Expression |
|---|---|
| fnprb.a |
|
| fnprb.b |
|
| fntpb.c |
|
| Ref | Expression |
|---|---|
| fntpb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnprb.a |
. . . . . . . 8
| |
| 2 | fnprb.b |
. . . . . . . 8
| |
| 3 | 1, 2 | fnprb 6472 |
. . . . . . 7
|
| 4 | tpidm23 4292 |
. . . . . . . . 9
| |
| 5 | 4 | eqcomi 2631 |
. . . . . . . 8
|
| 6 | 5 | fneq2i 5986 |
. . . . . . 7
|
| 7 | tpidm23 4292 |
. . . . . . . . 9
| |
| 8 | 7 | eqcomi 2631 |
. . . . . . . 8
|
| 9 | 8 | eqeq2i 2634 |
. . . . . . 7
|
| 10 | 3, 6, 9 | 3bitr3i 290 |
. . . . . 6
|
| 11 | 10 | a1i 11 |
. . . . 5
|
| 12 | tpeq3 4279 |
. . . . . 6
| |
| 13 | 12 | fneq2d 5982 |
. . . . 5
|
| 14 | id 22 |
. . . . . . . 8
| |
| 15 | fveq2 6191 |
. . . . . . . 8
| |
| 16 | 14, 15 | opeq12d 4410 |
. . . . . . 7
|
| 17 | 16 | tpeq3d 4282 |
. . . . . 6
|
| 18 | 17 | eqeq2d 2632 |
. . . . 5
|
| 19 | 11, 13, 18 | 3bitr3d 298 |
. . . 4
|
| 20 | 19 | a1d 25 |
. . 3
|
| 21 | fndm 5990 |
. . . . . . . 8
| |
| 22 | fvex 6201 |
. . . . . . . . 9
| |
| 23 | fvex 6201 |
. . . . . . . . 9
| |
| 24 | fvex 6201 |
. . . . . . . . 9
| |
| 25 | 22, 23, 24 | dmtpop 5611 |
. . . . . . . 8
|
| 26 | 21, 25 | syl6eqr 2674 |
. . . . . . 7
|
| 27 | 26 | adantl 482 |
. . . . . 6
|
| 28 | 21 | adantl 482 |
. . . . . . . . 9
|
| 29 | 28 | eleq2d 2687 |
. . . . . . . 8
|
| 30 | vex 3203 |
. . . . . . . . . 10
| |
| 31 | 30 | eltp 4230 |
. . . . . . . . 9
|
| 32 | 1, 22 | fvtp1 6460 |
. . . . . . . . . . . . 13
|
| 33 | 32 | ad2antrr 762 |
. . . . . . . . . . . 12
|
| 34 | 33 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 35 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 36 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 37 | 35, 36 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 38 | 34, 37 | syl5ibrcom 237 |
. . . . . . . . . 10
|
| 39 | 2, 23 | fvtp2 6461 |
. . . . . . . . . . . . 13
|
| 40 | 39 | ad4ant13 1292 |
. . . . . . . . . . . 12
|
| 41 | 40 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 42 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 43 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 44 | 42, 43 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 45 | 41, 44 | syl5ibrcom 237 |
. . . . . . . . . 10
|
| 46 | fntpb.c |
. . . . . . . . . . . . . 14
| |
| 47 | 46, 24 | fvtp3 6462 |
. . . . . . . . . . . . 13
|
| 48 | 47 | ad4ant23 1297 |
. . . . . . . . . . . 12
|
| 49 | 48 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 50 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 51 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 52 | 50, 51 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 53 | 49, 52 | syl5ibrcom 237 |
. . . . . . . . . 10
|
| 54 | 38, 45, 53 | 3jaod 1392 |
. . . . . . . . 9
|
| 55 | 31, 54 | syl5bi 232 |
. . . . . . . 8
|
| 56 | 29, 55 | sylbid 230 |
. . . . . . 7
|
| 57 | 56 | ralrimiv 2965 |
. . . . . 6
|
| 58 | fnfun 5988 |
. . . . . . 7
| |
| 59 | 1, 2, 46, 22, 23, 24 | funtp 5945 |
. . . . . . . 8
|
| 60 | 59 | 3expa 1265 |
. . . . . . 7
|
| 61 | eqfunfv 6316 |
. . . . . . 7
| |
| 62 | 58, 60, 61 | syl2anr 495 |
. . . . . 6
|
| 63 | 27, 57, 62 | mpbir2and 957 |
. . . . 5
|
| 64 | 1, 2, 46, 22, 23, 24 | fntp 5949 |
. . . . . . 7
|
| 65 | 64 | 3expa 1265 |
. . . . . 6
|
| 66 | fneq1 5979 |
. . . . . . 7
| |
| 67 | 66 | biimprd 238 |
. . . . . 6
|
| 68 | 65, 67 | mpan9 486 |
. . . . 5
|
| 69 | 63, 68 | impbida 877 |
. . . 4
|
| 70 | 69 | expcom 451 |
. . 3
|
| 71 | 20, 70 | pm2.61ine 2877 |
. 2
|
| 72 | 1, 46 | fnprb 6472 |
. . . . 5
|
| 73 | tpidm12 4290 |
. . . . . . 7
| |
| 74 | 73 | eqcomi 2631 |
. . . . . 6
|
| 75 | 74 | fneq2i 5986 |
. . . . 5
|
| 76 | tpidm12 4290 |
. . . . . . 7
| |
| 77 | 76 | eqcomi 2631 |
. . . . . 6
|
| 78 | 77 | eqeq2i 2634 |
. . . . 5
|
| 79 | 72, 75, 78 | 3bitr3i 290 |
. . . 4
|
| 80 | 79 | a1i 11 |
. . 3
|
| 81 | tpeq2 4278 |
. . . 4
| |
| 82 | 81 | fneq2d 5982 |
. . 3
|
| 83 | id 22 |
. . . . . 6
| |
| 84 | fveq2 6191 |
. . . . . 6
| |
| 85 | 83, 84 | opeq12d 4410 |
. . . . 5
|
| 86 | 85 | tpeq2d 4281 |
. . . 4
|
| 87 | 86 | eqeq2d 2632 |
. . 3
|
| 88 | 80, 82, 87 | 3bitr3d 298 |
. 2
|
| 89 | tpidm13 4291 |
. . . . . . 7
| |
| 90 | 89 | eqcomi 2631 |
. . . . . 6
|
| 91 | 90 | fneq2i 5986 |
. . . . 5
|
| 92 | tpidm13 4291 |
. . . . . . 7
| |
| 93 | 92 | eqcomi 2631 |
. . . . . 6
|
| 94 | 93 | eqeq2i 2634 |
. . . . 5
|
| 95 | 3, 91, 94 | 3bitr3i 290 |
. . . 4
|
| 96 | 95 | a1i 11 |
. . 3
|
| 97 | tpeq3 4279 |
. . . 4
| |
| 98 | 97 | fneq2d 5982 |
. . 3
|
| 99 | id 22 |
. . . . . 6
| |
| 100 | fveq2 6191 |
. . . . . 6
| |
| 101 | 99, 100 | opeq12d 4410 |
. . . . 5
|
| 102 | 101 | tpeq3d 4282 |
. . . 4
|
| 103 | 102 | eqeq2d 2632 |
. . 3
|
| 104 | 96, 98, 103 | 3bitr3d 298 |
. 2
|
| 105 | 71, 88, 104 | pm2.61iine 2884 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: wrd3tpop 13691 |
| Copyright terms: Public domain | W3C validator |