MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fntpb Structured version   Visualization version   Unicode version

Theorem fntpb 6473
Description: A function whose domain has at most three elements can be represented as a set of at most three ordered pairs. (Contributed by AV, 26-Jan-2021.)
Hypotheses
Ref Expression
fnprb.a  |-  A  e. 
_V
fnprb.b  |-  B  e. 
_V
fntpb.c  |-  C  e. 
_V
Assertion
Ref Expression
fntpb  |-  ( F  Fn  { A ,  B ,  C }  <->  F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } )

Proof of Theorem fntpb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fnprb.a . . . . . . . 8  |-  A  e. 
_V
2 fnprb.b . . . . . . . 8  |-  B  e. 
_V
31, 2fnprb 6472 . . . . . . 7  |-  ( F  Fn  { A ,  B }  <->  F  =  { <. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } )
4 tpidm23 4292 . . . . . . . . 9  |-  { A ,  B ,  B }  =  { A ,  B }
54eqcomi 2631 . . . . . . . 8  |-  { A ,  B }  =  { A ,  B ,  B }
65fneq2i 5986 . . . . . . 7  |-  ( F  Fn  { A ,  B }  <->  F  Fn  { A ,  B ,  B }
)
7 tpidm23 4292 . . . . . . . . 9  |-  { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. ,  <. B ,  ( F `  B ) >. }  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. }
87eqcomi 2631 . . . . . . . 8  |-  { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. }  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. B , 
( F `  B
) >. }
98eqeq2i 2634 . . . . . . 7  |-  ( F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. B , 
( F `  B
) >. } )
103, 6, 93bitr3i 290 . . . . . 6  |-  ( F  Fn  { A ,  B ,  B }  <->  F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. B , 
( F `  B
) >. } )
1110a1i 11 . . . . 5  |-  ( B  =  C  ->  ( F  Fn  { A ,  B ,  B }  <->  F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. B , 
( F `  B
) >. } ) )
12 tpeq3 4279 . . . . . 6  |-  ( B  =  C  ->  { A ,  B ,  B }  =  { A ,  B ,  C } )
1312fneq2d 5982 . . . . 5  |-  ( B  =  C  ->  ( F  Fn  { A ,  B ,  B }  <->  F  Fn  { A ,  B ,  C }
) )
14 id 22 . . . . . . . 8  |-  ( B  =  C  ->  B  =  C )
15 fveq2 6191 . . . . . . . 8  |-  ( B  =  C  ->  ( F `  B )  =  ( F `  C ) )
1614, 15opeq12d 4410 . . . . . . 7  |-  ( B  =  C  ->  <. B , 
( F `  B
) >.  =  <. C , 
( F `  C
) >. )
1716tpeq3d 4282 . . . . . 6  |-  ( B  =  C  ->  { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. ,  <. B ,  ( F `  B ) >. }  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } )
1817eqeq2d 2632 . . . . 5  |-  ( B  =  C  ->  ( F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. B , 
( F `  B
) >. }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } ) )
1911, 13, 183bitr3d 298 . . . 4  |-  ( B  =  C  ->  ( F  Fn  { A ,  B ,  C }  <->  F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } ) )
2019a1d 25 . . 3  |-  ( B  =  C  ->  (
( A  =/=  B  /\  A  =/=  C
)  ->  ( F  Fn  { A ,  B ,  C }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } ) ) )
21 fndm 5990 . . . . . . . 8  |-  ( F  Fn  { A ,  B ,  C }  ->  dom  F  =  { A ,  B ,  C } )
22 fvex 6201 . . . . . . . . 9  |-  ( F `
 A )  e. 
_V
23 fvex 6201 . . . . . . . . 9  |-  ( F `
 B )  e. 
_V
24 fvex 6201 . . . . . . . . 9  |-  ( F `
 C )  e. 
_V
2522, 23, 24dmtpop 5611 . . . . . . . 8  |-  dom  { <. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. }  =  { A ,  B ,  C }
2621, 25syl6eqr 2674 . . . . . . 7  |-  ( F  Fn  { A ,  B ,  C }  ->  dom  F  =  dom  {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } )
2726adantl 482 . . . . . 6  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  ->  dom  F  =  dom  { <. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } )
2821adantl 482 . . . . . . . . 9  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  ->  dom  F  =  { A ,  B ,  C }
)
2928eleq2d 2687 . . . . . . . 8  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( x  e.  dom  F  <-> 
x  e.  { A ,  B ,  C }
) )
30 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
3130eltp 4230 . . . . . . . . 9  |-  ( x  e.  { A ,  B ,  C }  <->  ( x  =  A  \/  x  =  B  \/  x  =  C )
)
321, 22fvtp1 6460 . . . . . . . . . . . . 13  |-  ( ( A  =/=  B  /\  A  =/=  C )  -> 
( { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  A
)  =  ( F `
 A ) )
3332ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  A
)  =  ( F `
 A ) )
3433eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( F `  A
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } `  A
) )
35 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
36 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  A  ->  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } `  A
) )
3735, 36eqeq12d 2637 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( F `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } `  x
)  <->  ( F `  A )  =  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  A
) ) )
3834, 37syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( x  =  A  ->  ( F `  x )  =  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  x
) ) )
392, 23fvtp2 6461 . . . . . . . . . . . . 13  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  B
)  =  ( F `
 B ) )
4039ad4ant13 1292 . . . . . . . . . . . 12  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  B
)  =  ( F `
 B ) )
4140eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( F `  B
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } `  B
) )
42 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
43 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  B  ->  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } `  B
) )
4442, 43eqeq12d 2637 . . . . . . . . . . 11  |-  ( x  =  B  ->  (
( F `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } `  x
)  <->  ( F `  B )  =  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  B
) ) )
4541, 44syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( x  =  B  ->  ( F `  x )  =  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  x
) ) )
46 fntpb.c . . . . . . . . . . . . . 14  |-  C  e. 
_V
4746, 24fvtp3 6462 . . . . . . . . . . . . 13  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  C
)  =  ( F `
 C ) )
4847ad4ant23 1297 . . . . . . . . . . . 12  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  C
)  =  ( F `
 C ) )
4948eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( F `  C
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } `  C
) )
50 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  C  ->  ( F `  x )  =  ( F `  C ) )
51 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  C  ->  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } `  C
) )
5250, 51eqeq12d 2637 . . . . . . . . . . 11  |-  ( x  =  C  ->  (
( F `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } `  x
)  <->  ( F `  C )  =  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  C
) ) )
5349, 52syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( x  =  C  ->  ( F `  x )  =  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  x
) ) )
5438, 45, 533jaod 1392 . . . . . . . . 9  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( ( x  =  A  \/  x  =  B  \/  x  =  C )  ->  ( F `  x )  =  ( { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. ,  <. C ,  ( F `  C ) >. } `  x ) ) )
5531, 54syl5bi 232 . . . . . . . 8  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( x  e.  { A ,  B ,  C }  ->  ( F `
 x )  =  ( { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  x
) ) )
5629, 55sylbid 230 . . . . . . 7  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( x  e.  dom  F  ->  ( F `  x )  =  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } `  x
) ) )
5756ralrimiv 2965 . . . . . 6  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  ->  A. x  e.  dom  F ( F `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } `  x
) )
58 fnfun 5988 . . . . . . 7  |-  ( F  Fn  { A ,  B ,  C }  ->  Fun  F )
591, 2, 46, 22, 23, 24funtp 5945 . . . . . . . 8  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } )
60593expa 1265 . . . . . . 7  |-  ( ( ( A  =/=  B  /\  A  =/=  C
)  /\  B  =/=  C )  ->  Fun  { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. ,  <. C ,  ( F `  C ) >. } )
61 eqfunfv 6316 . . . . . . 7  |-  ( ( Fun  F  /\  Fun  {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } )  -> 
( F  =  { <. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. }  <->  ( dom  F  =  dom  { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. ,  <. C ,  ( F `  C ) >. }  /\  A. x  e.  dom  F
( F `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } `  x
) ) ) )
6258, 60, 61syl2anr 495 . . . . . 6  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  -> 
( F  =  { <. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. }  <->  ( dom  F  =  dom  { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. ,  <. C ,  ( F `  C ) >. }  /\  A. x  e.  dom  F
( F `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } `  x
) ) ) )
6327, 57, 62mpbir2and 957 . . . . 5  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  Fn  { A ,  B ,  C } )  ->  F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } )
641, 2, 46, 22, 23, 24fntp 5949 . . . . . . 7  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. ,  <. C ,  ( F `  C ) >. }  Fn  { A ,  B ,  C } )
65643expa 1265 . . . . . 6  |-  ( ( ( A  =/=  B  /\  A  =/=  C
)  /\  B  =/=  C )  ->  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. }  Fn  { A ,  B ,  C } )
66 fneq1 5979 . . . . . . 7  |-  ( F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. }  ->  ( F  Fn  { A ,  B ,  C }  <->  {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. }  Fn  { A ,  B ,  C } ) )
6766biimprd 238 . . . . . 6  |-  ( F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. }  ->  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. }  Fn  { A ,  B ,  C }  ->  F  Fn  { A ,  B ,  C } ) )
6865, 67mpan9 486 . . . . 5  |-  ( ( ( ( A  =/= 
B  /\  A  =/=  C )  /\  B  =/= 
C )  /\  F  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } )  ->  F  Fn  { A ,  B ,  C }
)
6963, 68impbida 877 . . . 4  |-  ( ( ( A  =/=  B  /\  A  =/=  C
)  /\  B  =/=  C )  ->  ( F  Fn  { A ,  B ,  C }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } ) )
7069expcom 451 . . 3  |-  ( B  =/=  C  ->  (
( A  =/=  B  /\  A  =/=  C
)  ->  ( F  Fn  { A ,  B ,  C }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } ) ) )
7120, 70pm2.61ine 2877 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C )  -> 
( F  Fn  { A ,  B ,  C }  <->  F  =  { <. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. ,  <. C , 
( F `  C
) >. } ) )
721, 46fnprb 6472 . . . . 5  |-  ( F  Fn  { A ,  C }  <->  F  =  { <. A ,  ( F `
 A ) >. ,  <. C ,  ( F `  C )
>. } )
73 tpidm12 4290 . . . . . . 7  |-  { A ,  A ,  C }  =  { A ,  C }
7473eqcomi 2631 . . . . . 6  |-  { A ,  C }  =  { A ,  A ,  C }
7574fneq2i 5986 . . . . 5  |-  ( F  Fn  { A ,  C }  <->  F  Fn  { A ,  A ,  C }
)
76 tpidm12 4290 . . . . . . 7  |-  { <. A ,  ( F `  A ) >. ,  <. A ,  ( F `  A ) >. ,  <. C ,  ( F `  C ) >. }  =  { <. A ,  ( F `  A )
>. ,  <. C , 
( F `  C
) >. }
7776eqcomi 2631 . . . . . 6  |-  { <. A ,  ( F `  A ) >. ,  <. C ,  ( F `  C ) >. }  =  { <. A ,  ( F `  A )
>. ,  <. A , 
( F `  A
) >. ,  <. C , 
( F `  C
) >. }
7877eqeq2i 2634 . . . . 5  |-  ( F  =  { <. A , 
( F `  A
) >. ,  <. C , 
( F `  C
) >. }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. A , 
( F `  A
) >. ,  <. C , 
( F `  C
) >. } )
7972, 75, 783bitr3i 290 . . . 4  |-  ( F  Fn  { A ,  A ,  C }  <->  F  =  { <. A , 
( F `  A
) >. ,  <. A , 
( F `  A
) >. ,  <. C , 
( F `  C
) >. } )
8079a1i 11 . . 3  |-  ( A  =  B  ->  ( F  Fn  { A ,  A ,  C }  <->  F  =  { <. A , 
( F `  A
) >. ,  <. A , 
( F `  A
) >. ,  <. C , 
( F `  C
) >. } ) )
81 tpeq2 4278 . . . 4  |-  ( A  =  B  ->  { A ,  A ,  C }  =  { A ,  B ,  C } )
8281fneq2d 5982 . . 3  |-  ( A  =  B  ->  ( F  Fn  { A ,  A ,  C }  <->  F  Fn  { A ,  B ,  C }
) )
83 id 22 . . . . . 6  |-  ( A  =  B  ->  A  =  B )
84 fveq2 6191 . . . . . 6  |-  ( A  =  B  ->  ( F `  A )  =  ( F `  B ) )
8583, 84opeq12d 4410 . . . . 5  |-  ( A  =  B  ->  <. A , 
( F `  A
) >.  =  <. B , 
( F `  B
) >. )
8685tpeq2d 4281 . . . 4  |-  ( A  =  B  ->  { <. A ,  ( F `  A ) >. ,  <. A ,  ( F `  A ) >. ,  <. C ,  ( F `  C ) >. }  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } )
8786eqeq2d 2632 . . 3  |-  ( A  =  B  ->  ( F  =  { <. A , 
( F `  A
) >. ,  <. A , 
( F `  A
) >. ,  <. C , 
( F `  C
) >. }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } ) )
8880, 82, 873bitr3d 298 . 2  |-  ( A  =  B  ->  ( F  Fn  { A ,  B ,  C }  <->  F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } ) )
89 tpidm13 4291 . . . . . . 7  |-  { A ,  B ,  A }  =  { A ,  B }
9089eqcomi 2631 . . . . . 6  |-  { A ,  B }  =  { A ,  B ,  A }
9190fneq2i 5986 . . . . 5  |-  ( F  Fn  { A ,  B }  <->  F  Fn  { A ,  B ,  A }
)
92 tpidm13 4291 . . . . . . 7  |-  { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. ,  <. A ,  ( F `  A ) >. }  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. }
9392eqcomi 2631 . . . . . 6  |-  { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. }  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. A , 
( F `  A
) >. }
9493eqeq2i 2634 . . . . 5  |-  ( F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. A , 
( F `  A
) >. } )
953, 91, 943bitr3i 290 . . . 4  |-  ( F  Fn  { A ,  B ,  A }  <->  F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. A , 
( F `  A
) >. } )
9695a1i 11 . . 3  |-  ( A  =  C  ->  ( F  Fn  { A ,  B ,  A }  <->  F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. A , 
( F `  A
) >. } ) )
97 tpeq3 4279 . . . 4  |-  ( A  =  C  ->  { A ,  B ,  A }  =  { A ,  B ,  C } )
9897fneq2d 5982 . . 3  |-  ( A  =  C  ->  ( F  Fn  { A ,  B ,  A }  <->  F  Fn  { A ,  B ,  C }
) )
99 id 22 . . . . . 6  |-  ( A  =  C  ->  A  =  C )
100 fveq2 6191 . . . . . 6  |-  ( A  =  C  ->  ( F `  A )  =  ( F `  C ) )
10199, 100opeq12d 4410 . . . . 5  |-  ( A  =  C  ->  <. A , 
( F `  A
) >.  =  <. C , 
( F `  C
) >. )
102101tpeq3d 4282 . . . 4  |-  ( A  =  C  ->  { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. ,  <. A ,  ( F `  A ) >. }  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } )
103102eqeq2d 2632 . . 3  |-  ( A  =  C  ->  ( F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. A , 
( F `  A
) >. }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } ) )
10496, 98, 1033bitr3d 298 . 2  |-  ( A  =  C  ->  ( F  Fn  { A ,  B ,  C }  <->  F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } ) )
10571, 88, 104pm2.61iine 2884 1  |-  ( F  Fn  { A ,  B ,  C }  <->  F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. ,  <. C , 
( F `  C
) >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   {cpr 4179   {ctp 4181   <.cop 4183   dom cdm 5114   Fun wfun 5882    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  wrd3tpop  13691
  Copyright terms: Public domain W3C validator