| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an42 | Structured version Visualization version Unicode version | ||
| Description: Rearrangement of 4 conjuncts. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| an42 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 865 |
. 2
| |
| 2 | ancom 466 |
. . 3
| |
| 3 | 2 | anbi2i 730 |
. 2
|
| 4 | 1, 3 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: an43 867 brecop2 7841 supmo 8358 infmo 8401 aceq1 8940 dfiso2 16432 eulerpartlemt0 30431 isbasisrelowllem1 33203 isbasisrelowllem2 33204 ifp1bi 37847 |
| Copyright terms: Public domain | W3C validator |