MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiso2 Structured version   Visualization version   Unicode version

Theorem dfiso2 16432
Description: Alternate definition of an isomorphism of a category, according to definition 3.8 in [Adamek] p. 28. (Contributed by AV, 10-Apr-2017.)
Hypotheses
Ref Expression
dfiso2.b  |-  B  =  ( Base `  C
)
dfiso2.h  |-  H  =  ( Hom  `  C
)
dfiso2.c  |-  ( ph  ->  C  e.  Cat )
dfiso2.i  |-  I  =  (  Iso  `  C
)
dfiso2.x  |-  ( ph  ->  X  e.  B )
dfiso2.y  |-  ( ph  ->  Y  e.  B )
dfiso2.f  |-  ( ph  ->  F  e.  ( X H Y ) )
dfiso2.1  |-  .1.  =  ( Id `  C )
dfiso2.o  |-  .o.  =  ( <. X ,  Y >. (comp `  C ) X )
dfiso2.p  |-  .*  =  ( <. Y ,  X >. (comp `  C ) Y )
Assertion
Ref Expression
dfiso2  |-  ( ph  ->  ( F  e.  ( X I Y )  <->  E. g  e.  ( Y H X ) ( ( g  .o.  F
)  =  (  .1.  `  X )  /\  ( F  .*  g )  =  (  .1.  `  Y
) ) ) )
Distinct variable groups:    C, g    g, F    g, H    g, I    g, X    g, Y    .o. , g    .* , g    .1. , g    ph, g
Allowed substitution hint:    B( g)

Proof of Theorem dfiso2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 dfiso2.b . . . 4  |-  B  =  ( Base `  C
)
2 eqid 2622 . . . 4  |-  (Inv `  C )  =  (Inv
`  C )
3 dfiso2.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 dfiso2.x . . . 4  |-  ( ph  ->  X  e.  B )
5 dfiso2.y . . . 4  |-  ( ph  ->  Y  e.  B )
6 dfiso2.i . . . 4  |-  I  =  (  Iso  `  C
)
71, 2, 3, 4, 5, 6isoval 16425 . . 3  |-  ( ph  ->  ( X I Y )  =  dom  ( X (Inv `  C ) Y ) )
87eleq2d 2687 . 2  |-  ( ph  ->  ( F  e.  ( X I Y )  <-> 
F  e.  dom  ( X (Inv `  C ) Y ) ) )
9 eqid 2622 . . . . 5  |-  (Sect `  C )  =  (Sect `  C )
101, 2, 3, 4, 5, 9invfval 16419 . . . 4  |-  ( ph  ->  ( X (Inv `  C ) Y )  =  ( ( X (Sect `  C ) Y )  i^i  `' ( Y (Sect `  C
) X ) ) )
1110dmeqd 5326 . . 3  |-  ( ph  ->  dom  ( X (Inv
`  C ) Y )  =  dom  (
( X (Sect `  C ) Y )  i^i  `' ( Y (Sect `  C ) X ) ) )
1211eleq2d 2687 . 2  |-  ( ph  ->  ( F  e.  dom  ( X (Inv `  C
) Y )  <->  F  e.  dom  ( ( X (Sect `  C ) Y )  i^i  `' ( Y (Sect `  C ) X ) ) ) )
13 dfiso2.h . . . . . . . . 9  |-  H  =  ( Hom  `  C
)
14 eqid 2622 . . . . . . . . 9  |-  (comp `  C )  =  (comp `  C )
15 dfiso2.1 . . . . . . . . 9  |-  .1.  =  ( Id `  C )
161, 13, 14, 15, 9, 3, 4, 5sectfval 16411 . . . . . . . 8  |-  ( ph  ->  ( X (Sect `  C ) Y )  =  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X ) ) } )
171, 13, 14, 15, 9, 3, 5, 4sectfval 16411 . . . . . . . . . 10  |-  ( ph  ->  ( Y (Sect `  C ) X )  =  { <. g ,  f >.  |  ( ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y ) ) } )
1817cnveqd 5298 . . . . . . . . 9  |-  ( ph  ->  `' ( Y (Sect `  C ) X )  =  `' { <. g ,  f >.  |  ( ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y ) ) } )
19 cnvopab 5533 . . . . . . . . 9  |-  `' { <. g ,  f >.  |  ( ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) )  /\  (
f ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) }  =  { <. f ,  g >.  |  ( ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y ) ) }
2018, 19syl6eq 2672 . . . . . . . 8  |-  ( ph  ->  `' ( Y (Sect `  C ) X )  =  { <. f ,  g >.  |  ( ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y ) ) } )
2116, 20ineq12d 3815 . . . . . . 7  |-  ( ph  ->  ( ( X (Sect `  C ) Y )  i^i  `' ( Y (Sect `  C ) X ) )  =  ( { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X ) ) }  i^i  { <. f ,  g >.  |  ( ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y ) ) } ) )
22 inopab 5252 . . . . . . . 8  |-  ( {
<. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
g ( <. X ,  Y >. (comp `  C
) X ) f )  =  (  .1.  `  X ) ) }  i^i  { <. f ,  g >.  |  ( ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y ) ) } )  =  { <. f ,  g >.  |  ( ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
g ( <. X ,  Y >. (comp `  C
) X ) f )  =  (  .1.  `  X ) )  /\  ( ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) )  /\  (
f ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) ) }
23 an4 865 . . . . . . . . . 10  |-  ( ( ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
g ( <. X ,  Y >. (comp `  C
) X ) f )  =  (  .1.  `  X ) )  /\  ( ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) )  /\  (
f ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) )  <-> 
( ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
g  e.  ( Y H X )  /\  f  e.  ( X H Y ) ) )  /\  ( ( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  (
f ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) ) )
24 an42 866 . . . . . . . . . . . 12  |-  ( ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) ) )  <->  ( (
f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) ) ) )
25 anidm 676 . . . . . . . . . . . 12  |-  ( ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) ) )  <->  ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) ) )
2624, 25bitri 264 . . . . . . . . . . 11  |-  ( ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) ) )  <->  ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) ) )
2726anbi1i 731 . . . . . . . . . 10  |-  ( ( ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
g  e.  ( Y H X )  /\  f  e.  ( X H Y ) ) )  /\  ( ( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  (
f ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) )  <-> 
( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) )
2823, 27bitri 264 . . . . . . . . 9  |-  ( ( ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
g ( <. X ,  Y >. (comp `  C
) X ) f )  =  (  .1.  `  X ) )  /\  ( ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) )  /\  (
f ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) )  <-> 
( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) )
2928opabbii 4717 . . . . . . . 8  |-  { <. f ,  g >.  |  ( ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
g ( <. X ,  Y >. (comp `  C
) X ) f )  =  (  .1.  `  X ) )  /\  ( ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) )  /\  (
f ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) ) }  =  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( ( g ( <. X ,  Y >. (comp `  C
) X ) f )  =  (  .1.  `  X )  /\  (
f ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) ) }
3022, 29eqtri 2644 . . . . . . 7  |-  ( {
<. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
g ( <. X ,  Y >. (comp `  C
) X ) f )  =  (  .1.  `  X ) ) }  i^i  { <. f ,  g >.  |  ( ( g  e.  ( Y H X )  /\  f  e.  ( X H Y ) )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y ) ) } )  =  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( ( g ( <. X ,  Y >. (comp `  C
) X ) f )  =  (  .1.  `  X )  /\  (
f ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) ) }
3121, 30syl6eq 2672 . . . . . 6  |-  ( ph  ->  ( ( X (Sect `  C ) Y )  i^i  `' ( Y (Sect `  C ) X ) )  =  { <. f ,  g
>.  |  ( (
f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( ( g (
<. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) } )
3231dmeqd 5326 . . . . 5  |-  ( ph  ->  dom  ( ( X (Sect `  C ) Y )  i^i  `' ( Y (Sect `  C
) X ) )  =  dom  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( ( g ( <. X ,  Y >. (comp `  C
) X ) f )  =  (  .1.  `  X )  /\  (
f ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) ) } )
33 dmopab 5335 . . . . 5  |-  dom  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) }  =  { f  |  E. g ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) }
3432, 33syl6eq 2672 . . . 4  |-  ( ph  ->  dom  ( ( X (Sect `  C ) Y )  i^i  `' ( Y (Sect `  C
) X ) )  =  { f  |  E. g ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( ( g (
<. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) } )
3534eleq2d 2687 . . 3  |-  ( ph  ->  ( F  e.  dom  ( ( X (Sect `  C ) Y )  i^i  `' ( Y (Sect `  C ) X ) )  <->  F  e.  { f  |  E. g
( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) } ) )
36 dfiso2.f . . . 4  |-  ( ph  ->  F  e.  ( X H Y ) )
37 eleq1 2689 . . . . . . . 8  |-  ( f  =  F  ->  (
f  e.  ( X H Y )  <->  F  e.  ( X H Y ) ) )
3837anbi1d 741 . . . . . . 7  |-  ( f  =  F  ->  (
( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  <->  ( F  e.  ( X H Y )  /\  g  e.  ( Y H X ) ) ) )
39 oveq2 6658 . . . . . . . . 9  |-  ( f  =  F  ->  (
g ( <. X ,  Y >. (comp `  C
) X ) f )  =  ( g ( <. X ,  Y >. (comp `  C ) X ) F ) )
4039eqeq1d 2624 . . . . . . . 8  |-  ( f  =  F  ->  (
( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  <->  ( g ( <. X ,  Y >. (comp `  C
) X ) F )  =  (  .1.  `  X ) ) )
41 oveq1 6657 . . . . . . . . 9  |-  ( f  =  F  ->  (
f ( <. Y ,  X >. (comp `  C
) Y ) g )  =  ( F ( <. Y ,  X >. (comp `  C ) Y ) g ) )
4241eqeq1d 2624 . . . . . . . 8  |-  ( f  =  F  ->  (
( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )  <->  ( F ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) )
4340, 42anbi12d 747 . . . . . . 7  |-  ( f  =  F  ->  (
( ( g (
<. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
)  <->  ( ( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  (  .1.  `  X )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) ) )
4438, 43anbi12d 747 . . . . . 6  |-  ( f  =  F  ->  (
( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) )  <->  ( ( F  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  (  .1.  `  X )  /\  ( F ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) ) )
4544exbidv 1850 . . . . 5  |-  ( f  =  F  ->  ( E. g ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) )  <->  E. g
( ( F  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  (  .1.  `  X )  /\  ( F ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) ) )
4645elabg 3351 . . . 4  |-  ( F  e.  ( X H Y )  ->  ( F  e.  { f  |  E. g ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( ( g (
<. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) }  <->  E. g
( ( F  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  (  .1.  `  X )  /\  ( F ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) ) )
4736, 46syl 17 . . 3  |-  ( ph  ->  ( F  e.  {
f  |  E. g
( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) f )  =  (  .1.  `  X )  /\  ( f ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) }  <->  E. g
( ( F  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  (  .1.  `  X )  /\  ( F ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) ) ) )
4836biantrurd 529 . . . . . . 7  |-  ( ph  ->  ( g  e.  ( Y H X )  <-> 
( F  e.  ( X H Y )  /\  g  e.  ( Y H X ) ) ) )
4948bicomd 213 . . . . . 6  |-  ( ph  ->  ( ( F  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  <->  g  e.  ( Y H X ) ) )
50 dfiso2.o . . . . . . . . . . 11  |-  .o.  =  ( <. X ,  Y >. (comp `  C ) X )
5150a1i 11 . . . . . . . . . 10  |-  ( ph  ->  .o.  =  ( <. X ,  Y >. (comp `  C ) X ) )
5251eqcomd 2628 . . . . . . . . 9  |-  ( ph  ->  ( <. X ,  Y >. (comp `  C ) X )  =  .o.  )
5352oveqd 6667 . . . . . . . 8  |-  ( ph  ->  ( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( g  .o.  F ) )
5453eqeq1d 2624 . . . . . . 7  |-  ( ph  ->  ( ( g (
<. X ,  Y >. (comp `  C ) X ) F )  =  (  .1.  `  X )  <->  ( g  .o.  F )  =  (  .1.  `  X ) ) )
55 dfiso2.p . . . . . . . . . . 11  |-  .*  =  ( <. Y ,  X >. (comp `  C ) Y )
5655a1i 11 . . . . . . . . . 10  |-  ( ph  ->  .*  =  ( <. Y ,  X >. (comp `  C ) Y ) )
5756eqcomd 2628 . . . . . . . . 9  |-  ( ph  ->  ( <. Y ,  X >. (comp `  C ) Y )  =  .*  )
5857oveqd 6667 . . . . . . . 8  |-  ( ph  ->  ( F ( <. Y ,  X >. (comp `  C ) Y ) g )  =  ( F  .*  g ) )
5958eqeq1d 2624 . . . . . . 7  |-  ( ph  ->  ( ( F (
<. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )  <->  ( F  .*  g )  =  (  .1.  `  Y ) ) )
6054, 59anbi12d 747 . . . . . 6  |-  ( ph  ->  ( ( ( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  (  .1.  `  X )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) )  <->  ( (
g  .o.  F )  =  (  .1.  `  X
)  /\  ( F  .*  g )  =  (  .1.  `  Y )
) ) )
6149, 60anbi12d 747 . . . . 5  |-  ( ph  ->  ( ( ( F  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  (
( g ( <. X ,  Y >. (comp `  C ) X ) F )  =  (  .1.  `  X )  /\  ( F ( <. Y ,  X >. (comp `  C ) Y ) g )  =  (  .1.  `  Y )
) )  <->  ( g  e.  ( Y H X )  /\  ( ( g  .o.  F )  =  (  .1.  `  X )  /\  ( F  .*  g )  =  (  .1.  `  Y
) ) ) ) )
6261exbidv 1850 . . . 4  |-  ( ph  ->  ( E. g ( ( F  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( ( g ( <. X ,  Y >. (comp `  C
) X ) F )  =  (  .1.  `  X )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) )  <->  E. g ( g  e.  ( Y H X )  /\  ( ( g  .o.  F )  =  (  .1.  `  X )  /\  ( F  .*  g )  =  (  .1.  `  Y
) ) ) ) )
63 df-rex 2918 . . . 4  |-  ( E. g  e.  ( Y H X ) ( ( g  .o.  F
)  =  (  .1.  `  X )  /\  ( F  .*  g )  =  (  .1.  `  Y
) )  <->  E. g
( g  e.  ( Y H X )  /\  ( ( g  .o.  F )  =  (  .1.  `  X
)  /\  ( F  .*  g )  =  (  .1.  `  Y )
) ) )
6462, 63syl6bbr 278 . . 3  |-  ( ph  ->  ( E. g ( ( F  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( ( g ( <. X ,  Y >. (comp `  C
) X ) F )  =  (  .1.  `  X )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) g )  =  (  .1.  `  Y ) ) )  <->  E. g  e.  ( Y H X ) ( ( g  .o.  F
)  =  (  .1.  `  X )  /\  ( F  .*  g )  =  (  .1.  `  Y
) ) ) )
6535, 47, 643bitrd 294 . 2  |-  ( ph  ->  ( F  e.  dom  ( ( X (Sect `  C ) Y )  i^i  `' ( Y (Sect `  C ) X ) )  <->  E. g  e.  ( Y H X ) ( ( g  .o.  F )  =  (  .1.  `  X
)  /\  ( F  .*  g )  =  (  .1.  `  Y )
) ) )
668, 12, 653bitrd 294 1  |-  ( ph  ->  ( F  e.  ( X I Y )  <->  E. g  e.  ( Y H X ) ( ( g  .o.  F
)  =  (  .1.  `  X )  /\  ( F  .*  g )  =  (  .1.  `  Y
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913    i^i cin 3573   <.cop 4183   {copab 4712   `'ccnv 5113   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Sectcsect 16404  Invcinv 16405    Iso ciso 16406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-sect 16407  df-inv 16408  df-iso 16409
This theorem is referenced by:  dfiso3  16433
  Copyright terms: Public domain W3C validator