MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angval Structured version   Visualization version   Unicode version

Theorem angval 24531
Description: Define the angle function, which takes two complex numbers, treated as vectors from the origin, and returns the angle between them, in the range  (  -  pi ,  pi ]. To convert from the geometry notation,  m A B C, the measure of the angle with legs  A B,  C B where  C is more counterclockwise for positive angles, is represented by  ( ( C  -  B ) F ( A  -  B ) ). (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypothesis
Ref Expression
ang.1  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
Assertion
Ref Expression
angval  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  -> 
( A F B )  =  ( Im
`  ( log `  ( B  /  A ) ) ) )
Distinct variable groups:    x, y, A    x, B, y
Allowed substitution hints:    F( x, y)

Proof of Theorem angval
StepHypRef Expression
1 eldifsn 4317 . 2  |-  ( A  e.  ( CC  \  { 0 } )  <-> 
( A  e.  CC  /\  A  =/=  0 ) )
2 eldifsn 4317 . 2  |-  ( B  e.  ( CC  \  { 0 } )  <-> 
( B  e.  CC  /\  B  =/=  0 ) )
3 oveq12 6659 . . . . . 6  |-  ( ( y  =  B  /\  x  =  A )  ->  ( y  /  x
)  =  ( B  /  A ) )
43ancoms 469 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y  /  x
)  =  ( B  /  A ) )
54fveq2d 6195 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( log `  (
y  /  x ) )  =  ( log `  ( B  /  A
) ) )
65fveq2d 6195 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( Im `  ( log `  ( y  /  x ) ) )  =  ( Im `  ( log `  ( B  /  A ) ) ) )
7 ang.1 . . 3  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
8 fvex 6201 . . 3  |-  ( Im
`  ( log `  ( B  /  A ) ) )  e.  _V
96, 7, 8ovmpt2a 6791 . 2  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  ( CC  \  {
0 } ) )  ->  ( A F B )  =  ( Im `  ( log `  ( B  /  A
) ) ) )
101, 2, 9syl2anbr 497 1  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  -> 
( A F B )  =  ( Im
`  ( log `  ( B  /  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   CCcc 9934   0cc0 9936    / cdiv 10684   Imcim 13838   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  angcan  24532  angvald  24534
  Copyright terms: Public domain W3C validator