MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem3 Structured version   Visualization version   Unicode version

Theorem axcontlem3 25846
Description: Lemma for axcont 25856. Given the separation assumption,  B is a subset of  D. (Contributed by Scott Fenton, 18-Jun-2013.)
Hypothesis
Ref Expression
axcontlem3.1  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
Assertion
Ref Expression
axcontlem3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  B  C_  D )
Distinct variable groups:    A, p, x    B, p, x, y    N, p, x, y    U, p, x, y    Z, p, x, y
Allowed substitution hints:    A( y)    D( x, y, p)

Proof of Theorem axcontlem3
StepHypRef Expression
1 simplr2 1104 . 2  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  B  C_  ( EE `  N ) )
2 simpr2 1068 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  U  e.  A )
32anim1i 592 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  /\  p  e.  B )  ->  ( U  e.  A  /\  p  e.  B
) )
4 simplr3 1105 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. )
54adantr 481 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  /\  p  e.  B )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. )
6 breq1 4656 . . . . . 6  |-  ( x  =  U  ->  (
x  Btwn  <. Z , 
y >. 
<->  U  Btwn  <. Z , 
y >. ) )
7 opeq2 4403 . . . . . . 7  |-  ( y  =  p  ->  <. Z , 
y >.  =  <. Z ,  p >. )
87breq2d 4665 . . . . . 6  |-  ( y  =  p  ->  ( U  Btwn  <. Z ,  y
>. 
<->  U  Btwn  <. Z ,  p >. ) )
96, 8rspc2v 3322 . . . . 5  |-  ( ( U  e.  A  /\  p  e.  B )  ->  ( A. x  e.  A  A. y  e.  B  x  Btwn  <. Z , 
y >.  ->  U  Btwn  <. Z ,  p >. ) )
103, 5, 9sylc 65 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  /\  p  e.  B )  ->  U  Btwn  <. Z ,  p >. )
1110orcd 407 . . 3  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  /\  p  e.  B )  ->  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) )
1211ralrimiva 2966 . 2  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  A. p  e.  B  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) )
13 axcontlem3.1 . . . 4  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
1413sseq2i 3630 . . 3  |-  ( B 
C_  D  <->  B  C_  { p  e.  ( EE `  N
)  |  ( U 
Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) } )
15 ssrab 3680 . . 3  |-  ( B 
C_  { p  e.  ( EE `  N
)  |  ( U 
Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }  <->  ( B  C_  ( EE `  N
)  /\  A. p  e.  B  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) ) )
1614, 15bitri 264 . 2  |-  ( B 
C_  D  <->  ( B  C_  ( EE `  N
)  /\  A. p  e.  B  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) ) )
171, 12, 16sylanbrc 698 1  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  B  C_  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    C_ wss 3574   <.cop 4183   class class class wbr 4653   ` cfv 5888   NNcn 11020   EEcee 25768    Btwn cbtwn 25769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654
This theorem is referenced by:  axcontlem9  25852  axcontlem10  25853
  Copyright terms: Public domain W3C validator