MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem9 Structured version   Visualization version   Unicode version

Theorem axcontlem9 25852
Description: Lemma for axcont 25856. Given the separation assumption, all values of  F over  A are less than or equal to all values of  F over  B. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypotheses
Ref Expression
axcontlem9.1  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
axcontlem9.2  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
Assertion
Ref Expression
axcontlem9  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A. n  e.  ( F " A ) A. m  e.  ( F " B ) n  <_  m )
Distinct variable groups:    A, m, n, p, x    B, m, n, p, x, y   
t, D, x    i, F    m, F    t, F    i, p, t, x, N   
m, N, n, p   
t, N, x    y, N    U, i    U, m, n, p    t, U, x    y, U    i, Z    m, Z, n, p   
t, Z, x    y, Z    F, p
Allowed substitution hints:    A( y, t, i)    B( t, i)    D( y, i, m, n, p)    F( x, y, n)

Proof of Theorem axcontlem9
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  N  e.  NN )
2 simprl1 1106 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  Z  e.  ( EE `  N ) )
3 simplr1 1103 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A  C_  ( EE `  N ) )
4 simprl2 1107 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  U  e.  A
)
53, 4sseldd 3604 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  U  e.  ( EE `  N ) )
6 simprr 796 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  Z  =/=  U
)
7 axcontlem9.1 . . . . . 6  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
8 axcontlem9.2 . . . . . 6  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
97, 8axcontlem2 25845 . . . . 5  |-  ( ( ( N  e.  NN  /\  Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  /\  Z  =/=  U )  ->  F : D -1-1-onto-> ( 0 [,) +oo ) )
101, 2, 5, 6, 9syl31anc 1329 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  F : D -1-1-onto-> (
0 [,) +oo )
)
11 f1ofun 6139 . . . 4  |-  ( F : D -1-1-onto-> ( 0 [,) +oo )  ->  Fun  F )
12 fvelima 6248 . . . . 5  |-  ( ( Fun  F  /\  n  e.  ( F " A
) )  ->  E. a  e.  A  ( F `  a )  =  n )
1312ex 450 . . . 4  |-  ( Fun 
F  ->  ( n  e.  ( F " A
)  ->  E. a  e.  A  ( F `  a )  =  n ) )
1410, 11, 133syl 18 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( n  e.  ( F " A
)  ->  E. a  e.  A  ( F `  a )  =  n ) )
15 fvelima 6248 . . . . 5  |-  ( ( Fun  F  /\  m  e.  ( F " B
) )  ->  E. b  e.  B  ( F `  b )  =  m )
1615ex 450 . . . 4  |-  ( Fun 
F  ->  ( m  e.  ( F " B
)  ->  E. b  e.  B  ( F `  b )  =  m ) )
1710, 11, 163syl 18 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( m  e.  ( F " B
)  ->  E. b  e.  B  ( F `  b )  =  m ) )
18 reeanv 3107 . . . 4  |-  ( E. a  e.  A  E. b  e.  B  (
( F `  a
)  =  n  /\  ( F `  b )  =  m )  <->  ( E. a  e.  A  ( F `  a )  =  n  /\  E. b  e.  B  ( F `  b )  =  m ) )
19 simplr3 1105 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. )
20 breq1 4656 . . . . . . . . 9  |-  ( x  =  a  ->  (
x  Btwn  <. Z , 
y >. 
<->  a  Btwn  <. Z , 
y >. ) )
21 opeq2 4403 . . . . . . . . . 10  |-  ( y  =  b  ->  <. Z , 
y >.  =  <. Z , 
b >. )
2221breq2d 4665 . . . . . . . . 9  |-  ( y  =  b  ->  (
a  Btwn  <. Z , 
y >. 
<->  a  Btwn  <. Z , 
b >. ) )
2320, 22rspc2v 3322 . . . . . . . 8  |-  ( ( a  e.  A  /\  b  e.  B )  ->  ( A. x  e.  A  A. y  e.  B  x  Btwn  <. Z , 
y >.  ->  a  Btwn  <. Z ,  b >. ) )
2419, 23mpan9 486 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  a  Btwn  <. Z ,  b
>. )
25 simplll 798 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  N  e.  NN )
262adantr 481 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  Z  e.  ( EE `  N
) )
275adantr 481 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  U  e.  ( EE `  N
) )
2825, 26, 273jca 1242 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) ) )
29 simplrr 801 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  Z  =/=  U )
307axcontlem4 25847 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A  C_  D
)
3130sseld 3602 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( a  e.  A  ->  a  e.  D ) )
32 simpl 473 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) ) )
337axcontlem3 25846 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  B  C_  D )
3432, 2, 4, 6, 33syl13anc 1328 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  B  C_  D
)
3534sseld 3602 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( b  e.  B  ->  b  e.  D ) )
3631, 35anim12d 586 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( a  e.  A  /\  b  e.  B )  ->  (
a  e.  D  /\  b  e.  D )
) )
3736imp 445 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  (
a  e.  D  /\  b  e.  D )
)
387, 8axcontlem7 25850 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
a  e.  D  /\  b  e.  D )
)  ->  ( a  Btwn  <. Z ,  b
>. 
<->  ( F `  a
)  <_  ( F `  b ) ) )
3928, 29, 37, 38syl21anc 1325 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  (
a  Btwn  <. Z , 
b >. 
<->  ( F `  a
)  <_  ( F `  b ) ) )
4024, 39mpbid 222 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  ( F `  a )  <_  ( F `  b
) )
41 breq12 4658 . . . . . 6  |-  ( ( ( F `  a
)  =  n  /\  ( F `  b )  =  m )  -> 
( ( F `  a )  <_  ( F `  b )  <->  n  <_  m ) )
4240, 41syl5ibcom 235 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( a  e.  A  /\  b  e.  B
) )  ->  (
( ( F `  a )  =  n  /\  ( F `  b )  =  m )  ->  n  <_  m ) )
4342rexlimdvva 3038 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( E. a  e.  A  E. b  e.  B  ( ( F `  a )  =  n  /\  ( F `  b )  =  m )  ->  n  <_  m ) )
4418, 43syl5bir 233 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( E. a  e.  A  ( F `  a )  =  n  /\  E. b  e.  B  ( F `  b )  =  m )  ->  n  <_  m ) )
4514, 17, 44syl2and 500 . 2  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( n  e.  ( F " A )  /\  m  e.  ( F " B
) )  ->  n  <_  m ) )
4645ralrimivv 2970 1  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A. n  e.  ( F " A ) A. m  e.  ( F " B ) n  <_  m )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   <.cop 4183   class class class wbr 4653   {copab 4712   "cima 5117   Fun wfun 5882   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    <_ cle 10075    - cmin 10266   NNcn 11020   [,)cico 12177   ...cfz 12326   EEcee 25768    Btwn cbtwn 25769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-z 11378  df-uz 11688  df-ico 12181  df-icc 12182  df-fz 12327  df-ee 25771  df-btwn 25772
This theorem is referenced by:  axcontlem10  25853
  Copyright terms: Public domain W3C validator