MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem10 Structured version   Visualization version   Unicode version

Theorem axcontlem10 25853
Description: Lemma for axcont 25856. Given a handful of assumptions, derive the conclusion of the final theorem. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypotheses
Ref Expression
axcontlem10.1  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
axcontlem10.2  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
Assertion
Ref Expression
axcontlem10  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
Distinct variable groups:    A, b, p, x    B, b, p, x, y    D, p, t, x    F, b   
i, F, p, t, x    y, F    N, b    i, N, p, t, x    y, N    U, b    U, i, p, t, x    y, U    Z, b    i, Z, p, t, x    y, Z
Allowed substitution hints:    A( y, t, i)    B( t, i)    D( y, i, b)

Proof of Theorem axcontlem10
Dummy variables  k  m  n  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5477 . . . . 5  |-  ( F
" A )  C_  ran  F
2 simpll 790 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  N  e.  NN )
3 simprl1 1106 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  Z  e.  ( EE `  N ) )
4 simplr1 1103 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A  C_  ( EE `  N ) )
5 simprl2 1107 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  U  e.  A
)
64, 5sseldd 3604 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  U  e.  ( EE `  N ) )
7 simprr 796 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  Z  =/=  U
)
8 axcontlem10.1 . . . . . . . 8  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
9 axcontlem10.2 . . . . . . . 8  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
108, 9axcontlem2 25845 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  /\  Z  =/=  U )  ->  F : D -1-1-onto-> ( 0 [,) +oo ) )
112, 3, 6, 7, 10syl31anc 1329 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  F : D -1-1-onto-> (
0 [,) +oo )
)
12 f1ofo 6144 . . . . . 6  |-  ( F : D -1-1-onto-> ( 0 [,) +oo )  ->  F : D -onto->
( 0 [,) +oo ) )
13 forn 6118 . . . . . 6  |-  ( F : D -onto-> ( 0 [,) +oo )  ->  ran  F  =  ( 0 [,) +oo ) )
1411, 12, 133syl 18 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ran  F  =  ( 0 [,) +oo ) )
151, 14syl5sseq 3653 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F " A )  C_  (
0 [,) +oo )
)
16 rge0ssre 12280 . . . 4  |-  ( 0 [,) +oo )  C_  RR
1715, 16syl6ss 3615 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F " A )  C_  RR )
18 imassrn 5477 . . . . 5  |-  ( F
" B )  C_  ran  F
1918, 14syl5sseq 3653 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F " B )  C_  (
0 [,) +oo )
)
2019, 16syl6ss 3615 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F " B )  C_  RR )
218, 9axcontlem9 25852 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A. m  e.  ( F " A ) A. n  e.  ( F " B ) m  <_  n )
22 dedekindle 10201 . . 3  |-  ( ( ( F " A
)  C_  RR  /\  ( F " B )  C_  RR  /\  A. m  e.  ( F " A
) A. n  e.  ( F " B
) m  <_  n
)  ->  E. k  e.  RR  A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n ) )
2317, 20, 21, 22syl3anc 1326 . 2  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  E. k  e.  RR  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )
24 simpr 477 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  k  e.  RR )
25 simprl3 1108 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  B  =/=  (/) )
2625ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  B  =/=  (/) )
27 n0 3931 . . . . . . . . . 10  |-  ( B  =/=  (/)  <->  E. b  b  e.  B )
2826, 27sylib 208 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  E. b  b  e.  B )
29 0red 10041 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  0  e.  RR )
30 f1of 6137 . . . . . . . . . . . . . . . 16  |-  ( F : D -1-1-onto-> ( 0 [,) +oo )  ->  F : D --> ( 0 [,) +oo ) )
3111, 30syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  F : D --> ( 0 [,) +oo ) )
328axcontlem4 25847 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A  C_  D
)
3332, 5sseldd 3604 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  U  e.  D
)
3431, 33ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F `  U )  e.  ( 0 [,) +oo )
)
3516, 34sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F `  U )  e.  RR )
3635ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  ( F `  U )  e.  RR )
37 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  k  e.  RR )
38 elrege0 12278 . . . . . . . . . . . . . . 15  |-  ( ( F `  U )  e.  ( 0 [,) +oo )  <->  ( ( F `
 U )  e.  RR  /\  0  <_ 
( F `  U
) ) )
3938simprbi 480 . . . . . . . . . . . . . 14  |-  ( ( F `  U )  e.  ( 0 [,) +oo )  ->  0  <_ 
( F `  U
) )
4034, 39syl 17 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  0  <_  ( F `  U )
)
4140ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  0  <_  ( F `  U ) )
42 f1of1 6136 . . . . . . . . . . . . . . . . . . . 20  |-  ( F : D -1-1-onto-> ( 0 [,) +oo )  ->  F : D -1-1-> ( 0 [,) +oo )
)
4311, 42syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  F : D -1-1-> ( 0 [,) +oo )
)
44 f1elima 6520 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : D -1-1-> ( 0 [,) +oo )  /\  U  e.  D  /\  A  C_  D )  ->  ( ( F `
 U )  e.  ( F " A
)  <->  U  e.  A
) )
4543, 33, 32, 44syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( F `
 U )  e.  ( F " A
)  <->  U  e.  A
) )
465, 45mpbird 247 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( F `  U )  e.  ( F " A ) )
4746adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  ( F `  U )  e.  ( F " A ) )
48 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  b  e.  B )  ->  b  e.  B )
4943adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  b  e.  B )  ->  F : D -1-1-> ( 0 [,) +oo )
)
50 simpl1 1064 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U )  ->  Z  e.  ( EE `  N ) )
51 simpl2 1065 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U )  ->  U  e.  A )
52 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U )  ->  Z  =/=  U )
5350, 51, 523jca 1242 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U )  -> 
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/=  U
) )
548axcontlem3 25846 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  ( Z  e.  ( EE `  N )  /\  U  e.  A  /\  Z  =/= 
U ) )  ->  B  C_  D )
5553, 54sylan2 491 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  B  C_  D
)
5655sselda 3603 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  b  e.  B )  ->  b  e.  D )
5755adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  b  e.  B )  ->  B  C_  D )
58 f1elima 6520 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : D -1-1-> ( 0 [,) +oo )  /\  b  e.  D  /\  B  C_  D )  ->  ( ( F `
 b )  e.  ( F " B
)  <->  b  e.  B
) )
5949, 56, 57, 58syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  b  e.  B )  ->  ( ( F `  b )  e.  ( F " B )  <-> 
b  e.  B ) )
6048, 59mpbird 247 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  b  e.  B )  ->  ( F `  b
)  e.  ( F
" B ) )
6160adantrl 752 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  ( F `  b )  e.  ( F " B ) )
6247, 61jca 554 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  ( ( F `  U )  e.  ( F " A
)  /\  ( F `  b )  e.  ( F " B ) ) )
63 breq1 4656 . . . . . . . . . . . . . . . . 17  |-  ( m  =  ( F `  U )  ->  (
m  <_  k  <->  ( F `  U )  <_  k
) )
6463anbi1d 741 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( F `  U )  ->  (
( m  <_  k  /\  k  <_  n )  <-> 
( ( F `  U )  <_  k  /\  k  <_  n ) ) )
65 breq2 4657 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( F `  b )  ->  (
k  <_  n  <->  k  <_  ( F `  b ) ) )
6665anbi2d 740 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( F `  b )  ->  (
( ( F `  U )  <_  k  /\  k  <_  n )  <-> 
( ( F `  U )  <_  k  /\  k  <_  ( F `
 b ) ) ) )
6764, 66rspc2va 3323 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F `  U )  e.  ( F " A )  /\  ( F `  b )  e.  ( F " B ) )  /\  A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n ) )  ->  (
( F `  U
)  <_  k  /\  k  <_  ( F `  b ) ) )
6862, 67sylan 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  /\  A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n ) )  ->  (
( F `  U
)  <_  k  /\  k  <_  ( F `  b ) ) )
6968an32s 846 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  ( ( F `  U )  <_  k  /\  k  <_ 
( F `  b
) ) )
7069simpld 475 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  ( F `  U )  <_  k
)
7129, 36, 37, 41, 70letrd 10194 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  ( k  e.  RR  /\  b  e.  B ) )  ->  0  <_  k )
7271expr 643 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  ( b  e.  B  ->  0  <_  k )
)
7372exlimdv 1861 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  ( E. b  b  e.  B  ->  0  <_  k ) )
7428, 73mpd 15 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  0  <_  k )
75 elrege0 12278 . . . . . . . 8  |-  ( k  e.  ( 0 [,) +oo )  <->  ( k  e.  RR  /\  0  <_ 
k ) )
7624, 74, 75sylanbrc 698 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  /\  k  e.  RR )  ->  k  e.  ( 0 [,) +oo ) )
7776ex 450 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  -> 
( k  e.  RR  ->  k  e.  ( 0 [,) +oo ) ) )
78 ssrab2 3687 . . . . . . . . . 10  |-  { p  e.  ( EE `  N
)  |  ( U 
Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }  C_  ( EE `  N )
798, 78eqsstri 3635 . . . . . . . . 9  |-  D  C_  ( EE `  N )
80 simpr 477 . . . . . . . . . 10  |-  ( ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
)  ->  k  e.  ( 0 [,) +oo ) )
81 f1ocnvdm 6540 . . . . . . . . . 10  |-  ( ( F : D -1-1-onto-> ( 0 [,) +oo )  /\  k  e.  ( 0 [,) +oo ) )  ->  ( `' F `  k )  e.  D
)
8211, 80, 81syl2an 494 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
) )  ->  ( `' F `  k )  e.  D )
8379, 82sseldi 3601 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
) )  ->  ( `' F `  k )  e.  ( EE `  N ) )
842, 3, 63jca 1242 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) ) )
8584, 7jca 554 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U ) )
8685adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( N  e.  NN  /\  Z  e.  ( EE
`  N )  /\  U  e.  ( EE `  N ) )  /\  Z  =/=  U ) )
8732sselda 3603 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  q  e.  A )  ->  q  e.  D )
8887adantrr 753 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( q  e.  A  /\  r  e.  B
) )  ->  q  e.  D )
8988adantrl 752 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  q  e.  D )
90 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
)  ->  k  e.  ( 0 [,) +oo ) )
9111, 90, 81syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  ( `' F `  k )  e.  D )
9255sselda 3603 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  r  e.  B )  ->  r  e.  D )
9392adantrl 752 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( q  e.  A  /\  r  e.  B
) )  ->  r  e.  D )
9493adantrl 752 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  r  e.  D )
9589, 91, 943jca 1242 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
q  e.  D  /\  ( `' F `  k )  e.  D  /\  r  e.  D ) )
9686, 95jca 554 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
q  e.  D  /\  ( `' F `  k )  e.  D  /\  r  e.  D ) ) )
97 f1ofun 6139 . . . . . . . . . . . . . . . . . . 19  |-  ( F : D -1-1-onto-> ( 0 [,) +oo )  ->  Fun  F )
9811, 97syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  Fun  F )
99 fdm 6051 . . . . . . . . . . . . . . . . . . . 20  |-  ( F : D --> ( 0 [,) +oo )  ->  dom  F  =  D )
10011, 30, 993syl 18 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  dom  F  =  D )
10132, 100sseqtr4d 3642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  A  C_  dom  F )
102 funfvima2 6493 . . . . . . . . . . . . . . . . . 18  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( q  e.  A  ->  ( F `  q
)  e.  ( F
" A ) ) )
10398, 101, 102syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( q  e.  A  ->  ( F `  q )  e.  ( F " A ) ) )
10455, 100sseqtr4d 3642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  B  C_  dom  F )
105 funfvima2 6493 . . . . . . . . . . . . . . . . . 18  |-  ( ( Fun  F  /\  B  C_ 
dom  F )  -> 
( r  e.  B  ->  ( F `  r
)  e.  ( F
" B ) ) )
10698, 104, 105syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( r  e.  B  ->  ( F `  r )  e.  ( F " B ) ) )
107103, 106anim12d 586 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( ( q  e.  A  /\  r  e.  B )  ->  (
( F `  q
)  e.  ( F
" A )  /\  ( F `  r )  e.  ( F " B ) ) ) )
108107imp 445 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( q  e.  A  /\  r  e.  B
) )  ->  (
( F `  q
)  e.  ( F
" A )  /\  ( F `  r )  e.  ( F " B ) ) )
109108adantrl 752 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( F `  q
)  e.  ( F
" A )  /\  ( F `  r )  e.  ( F " B ) ) )
110 simprll 802 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n ) )
111 breq1 4656 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( F `  q )  ->  (
m  <_  k  <->  ( F `  q )  <_  k
) )
112111anbi1d 741 . . . . . . . . . . . . . . 15  |-  ( m  =  ( F `  q )  ->  (
( m  <_  k  /\  k  <_  n )  <-> 
( ( F `  q )  <_  k  /\  k  <_  n ) ) )
113 breq2 4657 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( F `  r )  ->  (
k  <_  n  <->  k  <_  ( F `  r ) ) )
114113anbi2d 740 . . . . . . . . . . . . . . 15  |-  ( n  =  ( F `  r )  ->  (
( ( F `  q )  <_  k  /\  k  <_  n )  <-> 
( ( F `  q )  <_  k  /\  k  <_  ( F `
 r ) ) ) )
115112, 114rspc2v 3322 . . . . . . . . . . . . . 14  |-  ( ( ( F `  q
)  e.  ( F
" A )  /\  ( F `  r )  e.  ( F " B ) )  -> 
( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  ->  ( ( F `  q )  <_  k  /\  k  <_ 
( F `  r
) ) ) )
116109, 110, 115sylc 65 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( F `  q
)  <_  k  /\  k  <_  ( F `  r ) ) )
117 f1ocnvfv2 6533 . . . . . . . . . . . . . . . 16  |-  ( ( F : D -1-1-onto-> ( 0 [,) +oo )  /\  k  e.  ( 0 [,) +oo ) )  ->  ( F `  ( `' F `  k ) )  =  k )
11811, 90, 117syl2an 494 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  ( F `  ( `' F `  k )
)  =  k )
119118breq2d 4665 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( F `  q
)  <_  ( F `  ( `' F `  k ) )  <->  ( F `  q )  <_  k
) )
120118breq1d 4663 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( F `  ( `' F `  k ) )  <_  ( F `  r )  <->  k  <_  ( F `  r ) ) )
121119, 120anbi12d 747 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( ( F `  q )  <_  ( F `  ( `' F `  k )
)  /\  ( F `  ( `' F `  k ) )  <_ 
( F `  r
) )  <->  ( ( F `  q )  <_  k  /\  k  <_ 
( F `  r
) ) ) )
122116, 121mpbird 247 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  (
( F `  q
)  <_  ( F `  ( `' F `  k ) )  /\  ( F `  ( `' F `  k ) )  <_  ( F `  r ) ) )
1238, 9axcontlem8 25851 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  (
q  e.  D  /\  ( `' F `  k )  e.  D  /\  r  e.  D ) )  -> 
( ( ( F `
 q )  <_ 
( F `  ( `' F `  k ) )  /\  ( F `
 ( `' F `  k ) )  <_ 
( F `  r
) )  ->  ( `' F `  k ) 
Btwn  <. q ,  r
>. ) )
12496, 122, 123sylc 65 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo ) )  /\  (
q  e.  A  /\  r  e.  B )
) )  ->  ( `' F `  k ) 
Btwn  <. q ,  r
>. )
125124anassrs 680 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
) )  /\  (
q  e.  A  /\  r  e.  B )
)  ->  ( `' F `  k )  Btwn  <. q ,  r
>. )
126125ralrimivva 2971 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
) )  ->  A. q  e.  A  A. r  e.  B  ( `' F `  k )  Btwn  <. q ,  r
>. )
127 opeq1 4402 . . . . . . . . . . 11  |-  ( q  =  x  ->  <. q ,  r >.  =  <. x ,  r >. )
128127breq2d 4665 . . . . . . . . . 10  |-  ( q  =  x  ->  (
( `' F `  k )  Btwn  <. q ,  r >.  <->  ( `' F `  k )  Btwn  <. x ,  r
>. ) )
129 opeq2 4403 . . . . . . . . . . 11  |-  ( r  =  y  ->  <. x ,  r >.  =  <. x ,  y >. )
130129breq2d 4665 . . . . . . . . . 10  |-  ( r  =  y  ->  (
( `' F `  k )  Btwn  <. x ,  r >.  <->  ( `' F `  k )  Btwn  <. x ,  y
>. ) )
131128, 130cbvral2v 3179 . . . . . . . . 9  |-  ( A. q  e.  A  A. r  e.  B  ( `' F `  k ) 
Btwn  <. q ,  r
>. 
<-> 
A. x  e.  A  A. y  e.  B  ( `' F `  k ) 
Btwn  <. x ,  y
>. )
132126, 131sylib 208 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
) )  ->  A. x  e.  A  A. y  e.  B  ( `' F `  k )  Btwn  <. x ,  y
>. )
133 breq1 4656 . . . . . . . . . 10  |-  ( b  =  ( `' F `  k )  ->  (
b  Btwn  <. x ,  y >.  <->  ( `' F `  k )  Btwn  <. x ,  y >. )
)
1341332ralbidv 2989 . . . . . . . . 9  |-  ( b  =  ( `' F `  k )  ->  ( A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. 
<-> 
A. x  e.  A  A. y  e.  B  ( `' F `  k ) 
Btwn  <. x ,  y
>. ) )
135134rspcev 3309 . . . . . . . 8  |-  ( ( ( `' F `  k )  e.  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  ( `' F `  k )  Btwn  <. x ,  y >. )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
13683, 132, 135syl2anc 693 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  ( A. m  e.  ( F " A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n )  /\  k  e.  ( 0 [,) +oo )
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
137136expr 643 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  -> 
( k  e.  ( 0 [,) +oo )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
13877, 137syld 47 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A 
C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y >. ) )  /\  ( ( Z  e.  ( EE
`  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  /\  A. m  e.  ( F
" A ) A. n  e.  ( F " B ) ( m  <_  k  /\  k  <_  n ) )  -> 
( k  e.  RR  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) )
139138ex 450 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  ->  ( k  e.  RR  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
) )
140139com23 86 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( k  e.  RR  ->  ( A. m  e.  ( F " A ) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
) )
141140rexlimdv 3030 . 2  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  ( E. k  e.  RR  A. m  e.  ( F " A
) A. n  e.  ( F " B
) ( m  <_ 
k  /\  k  <_  n )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
)
14223, 141mpd 15 1  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. Z ,  y
>. ) )  /\  (
( Z  e.  ( EE `  N )  /\  U  e.  A  /\  B  =/=  (/) )  /\  Z  =/=  U ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   <.cop 4183   class class class wbr 4653   {copab 4712   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    <_ cle 10075    - cmin 10266   NNcn 11020   [,)cico 12177   ...cfz 12326   EEcee 25768    Btwn cbtwn 25769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-z 11378  df-uz 11688  df-ico 12181  df-icc 12182  df-fz 12327  df-ee 25771  df-btwn 25772
This theorem is referenced by:  axcontlem11  25854
  Copyright terms: Public domain W3C validator