MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgcont Structured version   Visualization version   Unicode version

Theorem axtgcont 25368
Description: Axiom of Continuity. Axiom A11 of [Schwabhauser] p. 13. For more information see axtgcont1 25367. (Contributed by Thierry Arnoux, 16-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p  |-  P  =  ( Base `  G
)
axtrkg.d  |-  .-  =  ( dist `  G )
axtrkg.i  |-  I  =  (Itv `  G )
axtrkg.g  |-  ( ph  ->  G  e. TarskiG )
axtgcont.1  |-  ( ph  ->  S  C_  P )
axtgcont.2  |-  ( ph  ->  T  C_  P )
axtgcont.3  |-  ( ph  ->  A  e.  P )
axtgcont.4  |-  ( (
ph  /\  u  e.  S  /\  v  e.  T
)  ->  u  e.  ( A I v ) )
Assertion
Ref Expression
axtgcont  |-  ( ph  ->  E. b  e.  P  A. x  e.  S  A. y  e.  T  b  e.  ( x I y ) )
Distinct variable groups:    x, y    v, b, A, u, x, y    I, b    v, u, x, y, I    P, b, u, v, x, y    S, b, x    T, b, x, y    .- , b, u, v, x, y    ph, u, v    u, S, v    u, T, v    u, A, x, y
Allowed substitution hints:    ph( x, y, b)    S( y)    G( x, y, v, u, b)

Proof of Theorem axtgcont
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 axtgcont.3 . . 3  |-  ( ph  ->  A  e.  P )
2 axtgcont.4 . . . . 5  |-  ( (
ph  /\  u  e.  S  /\  v  e.  T
)  ->  u  e.  ( A I v ) )
323expb 1266 . . . 4  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  T ) )  ->  u  e.  ( A I v ) )
43ralrimivva 2971 . . 3  |-  ( ph  ->  A. u  e.  S  A. v  e.  T  u  e.  ( A I v ) )
5 simplr 792 . . . . . . 7  |-  ( ( ( a  =  A  /\  x  =  u )  /\  y  =  v )  ->  x  =  u )
6 simpll 790 . . . . . . . 8  |-  ( ( ( a  =  A  /\  x  =  u )  /\  y  =  v )  ->  a  =  A )
7 simpr 477 . . . . . . . 8  |-  ( ( ( a  =  A  /\  x  =  u )  /\  y  =  v )  ->  y  =  v )
86, 7oveq12d 6668 . . . . . . 7  |-  ( ( ( a  =  A  /\  x  =  u )  /\  y  =  v )  ->  (
a I y )  =  ( A I v ) )
95, 8eleq12d 2695 . . . . . 6  |-  ( ( ( a  =  A  /\  x  =  u )  /\  y  =  v )  ->  (
x  e.  ( a I y )  <->  u  e.  ( A I v ) ) )
109cbvraldva 3177 . . . . 5  |-  ( ( a  =  A  /\  x  =  u )  ->  ( A. y  e.  T  x  e.  ( a I y )  <->  A. v  e.  T  u  e.  ( A I v ) ) )
1110cbvraldva 3177 . . . 4  |-  ( a  =  A  ->  ( A. x  e.  S  A. y  e.  T  x  e.  ( a
I y )  <->  A. u  e.  S  A. v  e.  T  u  e.  ( A I v ) ) )
1211rspcev 3309 . . 3  |-  ( ( A  e.  P  /\  A. u  e.  S  A. v  e.  T  u  e.  ( A I v ) )  ->  E. a  e.  P  A. x  e.  S  A. y  e.  T  x  e.  ( a I y ) )
131, 4, 12syl2anc 693 . 2  |-  ( ph  ->  E. a  e.  P  A. x  e.  S  A. y  e.  T  x  e.  ( a
I y ) )
14 axtrkg.p . . 3  |-  P  =  ( Base `  G
)
15 axtrkg.d . . 3  |-  .-  =  ( dist `  G )
16 axtrkg.i . . 3  |-  I  =  (Itv `  G )
17 axtrkg.g . . 3  |-  ( ph  ->  G  e. TarskiG )
18 axtgcont.1 . . 3  |-  ( ph  ->  S  C_  P )
19 axtgcont.2 . . 3  |-  ( ph  ->  T  C_  P )
2014, 15, 16, 17, 18, 19axtgcont1 25367 . 2  |-  ( ph  ->  ( E. a  e.  P  A. x  e.  S  A. y  e.  T  x  e.  ( a I y )  ->  E. b  e.  P  A. x  e.  S  A. y  e.  T  b  e.  ( x I y ) ) )
2113, 20mpd 15 1  |-  ( ph  ->  E. b  e.  P  A. x  e.  S  A. y  e.  T  b  e.  ( x I y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-trkgb 25348  df-trkg 25352
This theorem is referenced by:  f1otrg  25751
  Copyright terms: Public domain W3C validator