| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axtgcont1 | Structured version Visualization version Unicode version | ||
| Description: Axiom of Continuity.
Axiom A11 of [Schwabhauser] p. 13. This
axiom
(scheme) asserts that any two sets |
| Ref | Expression |
|---|---|
| axtrkg.p |
|
| axtrkg.d |
|
| axtrkg.i |
|
| axtrkg.g |
|
| axtgcont.1 |
|
| axtgcont.2 |
|
| Ref | Expression |
|---|---|
| axtgcont1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-trkg 25352 |
. . . . 5
| |
| 2 | inss1 3833 |
. . . . . 6
| |
| 3 | inss2 3834 |
. . . . . 6
| |
| 4 | 2, 3 | sstri 3612 |
. . . . 5
|
| 5 | 1, 4 | eqsstri 3635 |
. . . 4
|
| 6 | axtrkg.g |
. . . 4
| |
| 7 | 5, 6 | sseldi 3601 |
. . 3
|
| 8 | axtrkg.p |
. . . . . 6
| |
| 9 | axtrkg.d |
. . . . . 6
| |
| 10 | axtrkg.i |
. . . . . 6
| |
| 11 | 8, 9, 10 | istrkgb 25354 |
. . . . 5
|
| 12 | 11 | simprbi 480 |
. . . 4
|
| 13 | 12 | simp3d 1075 |
. . 3
|
| 14 | 7, 13 | syl 17 |
. 2
|
| 15 | axtgcont.1 |
. . . 4
| |
| 16 | fvex 6201 |
. . . . . . 7
| |
| 17 | 8, 16 | eqeltri 2697 |
. . . . . 6
|
| 18 | 17 | ssex 4802 |
. . . . 5
|
| 19 | elpwg 4166 |
. . . . 5
| |
| 20 | 15, 18, 19 | 3syl 18 |
. . . 4
|
| 21 | 15, 20 | mpbird 247 |
. . 3
|
| 22 | axtgcont.2 |
. . . 4
| |
| 23 | 17 | ssex 4802 |
. . . . 5
|
| 24 | elpwg 4166 |
. . . . 5
| |
| 25 | 22, 23, 24 | 3syl 18 |
. . . 4
|
| 26 | 22, 25 | mpbird 247 |
. . 3
|
| 27 | raleq 3138 |
. . . . . 6
| |
| 28 | 27 | rexbidv 3052 |
. . . . 5
|
| 29 | raleq 3138 |
. . . . . 6
| |
| 30 | 29 | rexbidv 3052 |
. . . . 5
|
| 31 | 28, 30 | imbi12d 334 |
. . . 4
|
| 32 | raleq 3138 |
. . . . . 6
| |
| 33 | 32 | rexralbidv 3058 |
. . . . 5
|
| 34 | raleq 3138 |
. . . . . 6
| |
| 35 | 34 | rexralbidv 3058 |
. . . . 5
|
| 36 | 33, 35 | imbi12d 334 |
. . . 4
|
| 37 | 31, 36 | rspc2v 3322 |
. . 3
|
| 38 | 21, 26, 37 | syl2anc 693 |
. 2
|
| 39 | 14, 38 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-trkgb 25348 df-trkg 25352 |
| This theorem is referenced by: axtgcont 25368 |
| Copyright terms: Public domain | W3C validator |