| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axtgpasch | Structured version Visualization version Unicode version | ||
| Description: Axiom of (Inner) Pasch,
Axiom A7 of [Schwabhauser] p. 12. Given
triangle |
| Ref | Expression |
|---|---|
| axtrkg.p |
|
| axtrkg.d |
|
| axtrkg.i |
|
| axtrkg.g |
|
| axtgpasch.1 |
|
| axtgpasch.2 |
|
| axtgpasch.3 |
|
| axtgpasch.4 |
|
| axtgpasch.5 |
|
| axtgpasch.6 |
|
| axtgpasch.7 |
|
| Ref | Expression |
|---|---|
| axtgpasch |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axtgpasch.6 |
. 2
| |
| 2 | axtgpasch.7 |
. 2
| |
| 3 | df-trkg 25352 |
. . . . . . 7
| |
| 4 | inss1 3833 |
. . . . . . . 8
| |
| 5 | inss2 3834 |
. . . . . . . 8
| |
| 6 | 4, 5 | sstri 3612 |
. . . . . . 7
|
| 7 | 3, 6 | eqsstri 3635 |
. . . . . 6
|
| 8 | axtrkg.g |
. . . . . 6
| |
| 9 | 7, 8 | sseldi 3601 |
. . . . 5
|
| 10 | axtrkg.p |
. . . . . . . 8
| |
| 11 | axtrkg.d |
. . . . . . . 8
| |
| 12 | axtrkg.i |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | istrkgb 25354 |
. . . . . . 7
|
| 14 | 13 | simprbi 480 |
. . . . . 6
|
| 15 | 14 | simp2d 1074 |
. . . . 5
|
| 16 | 9, 15 | syl 17 |
. . . 4
|
| 17 | axtgpasch.1 |
. . . . 5
| |
| 18 | axtgpasch.2 |
. . . . 5
| |
| 19 | axtgpasch.3 |
. . . . 5
| |
| 20 | oveq1 6657 |
. . . . . . . . . 10
| |
| 21 | 20 | eleq2d 2687 |
. . . . . . . . 9
|
| 22 | 21 | anbi1d 741 |
. . . . . . . 8
|
| 23 | oveq2 6658 |
. . . . . . . . . . 11
| |
| 24 | 23 | eleq2d 2687 |
. . . . . . . . . 10
|
| 25 | 24 | anbi2d 740 |
. . . . . . . . 9
|
| 26 | 25 | rexbidv 3052 |
. . . . . . . 8
|
| 27 | 22, 26 | imbi12d 334 |
. . . . . . 7
|
| 28 | 27 | 2ralbidv 2989 |
. . . . . 6
|
| 29 | oveq1 6657 |
. . . . . . . . . 10
| |
| 30 | 29 | eleq2d 2687 |
. . . . . . . . 9
|
| 31 | 30 | anbi2d 740 |
. . . . . . . 8
|
| 32 | oveq2 6658 |
. . . . . . . . . . 11
| |
| 33 | 32 | eleq2d 2687 |
. . . . . . . . . 10
|
| 34 | 33 | anbi1d 741 |
. . . . . . . . 9
|
| 35 | 34 | rexbidv 3052 |
. . . . . . . 8
|
| 36 | 31, 35 | imbi12d 334 |
. . . . . . 7
|
| 37 | 36 | 2ralbidv 2989 |
. . . . . 6
|
| 38 | oveq2 6658 |
. . . . . . . . . 10
| |
| 39 | 38 | eleq2d 2687 |
. . . . . . . . 9
|
| 40 | oveq2 6658 |
. . . . . . . . . 10
| |
| 41 | 40 | eleq2d 2687 |
. . . . . . . . 9
|
| 42 | 39, 41 | anbi12d 747 |
. . . . . . . 8
|
| 43 | 42 | imbi1d 331 |
. . . . . . 7
|
| 44 | 43 | 2ralbidv 2989 |
. . . . . 6
|
| 45 | 28, 37, 44 | rspc3v 3325 |
. . . . 5
|
| 46 | 17, 18, 19, 45 | syl3anc 1326 |
. . . 4
|
| 47 | 16, 46 | mpd 15 |
. . 3
|
| 48 | axtgpasch.4 |
. . . 4
| |
| 49 | axtgpasch.5 |
. . . 4
| |
| 50 | eleq1 2689 |
. . . . . . 7
| |
| 51 | 50 | anbi1d 741 |
. . . . . 6
|
| 52 | oveq1 6657 |
. . . . . . . . 9
| |
| 53 | 52 | eleq2d 2687 |
. . . . . . . 8
|
| 54 | 53 | anbi1d 741 |
. . . . . . 7
|
| 55 | 54 | rexbidv 3052 |
. . . . . 6
|
| 56 | 51, 55 | imbi12d 334 |
. . . . 5
|
| 57 | eleq1 2689 |
. . . . . . 7
| |
| 58 | 57 | anbi2d 740 |
. . . . . 6
|
| 59 | oveq1 6657 |
. . . . . . . . 9
| |
| 60 | 59 | eleq2d 2687 |
. . . . . . . 8
|
| 61 | 60 | anbi2d 740 |
. . . . . . 7
|
| 62 | 61 | rexbidv 3052 |
. . . . . 6
|
| 63 | 58, 62 | imbi12d 334 |
. . . . 5
|
| 64 | 56, 63 | rspc2v 3322 |
. . . 4
|
| 65 | 48, 49, 64 | syl2anc 693 |
. . 3
|
| 66 | 47, 65 | mpd 15 |
. 2
|
| 67 | 1, 2, 66 | mp2and 715 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-trkgb 25348 df-trkg 25352 |
| This theorem is referenced by: tgbtwncom 25383 tgbtwnswapid 25387 tgbtwnintr 25388 tgtrisegint 25394 tgbtwnconn1 25470 midexlem 25587 opphllem 25627 opphllem1 25639 outpasch 25647 hlpasch 25648 lnopp2hpgb 25655 f1otrg 25751 |
| Copyright terms: Public domain | W3C validator |