| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istrkgb | Structured version Visualization version Unicode version | ||
| Description: Property of being a Tarski geometry - betweenness part. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| Ref | Expression |
|---|---|
| istrkg.p |
|
| istrkg.d |
|
| istrkg.i |
|
| Ref | Expression |
|---|---|
| istrkgb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrkg.p |
. . 3
| |
| 2 | istrkg.i |
. . 3
| |
| 3 | simpl 473 |
. . . . . 6
| |
| 4 | 3 | eqcomd 2628 |
. . . . 5
|
| 5 | 4 | adantr 481 |
. . . . . 6
|
| 6 | simpllr 799 |
. . . . . . . . . 10
| |
| 7 | 6 | eqcomd 2628 |
. . . . . . . . 9
|
| 8 | 7 | oveqd 6667 |
. . . . . . . 8
|
| 9 | 8 | eleq2d 2687 |
. . . . . . 7
|
| 10 | 9 | imbi1d 331 |
. . . . . 6
|
| 11 | 5, 10 | raleqbidva 3154 |
. . . . 5
|
| 12 | 4, 11 | raleqbidva 3154 |
. . . 4
|
| 13 | 5 | adantr 481 |
. . . . . . 7
|
| 14 | 13 | adantr 481 |
. . . . . . . 8
|
| 15 | 14 | adantr 481 |
. . . . . . . . 9
|
| 16 | simp-6r 811 |
. . . . . . . . . . . . . 14
| |
| 17 | 16 | eqcomd 2628 |
. . . . . . . . . . . . 13
|
| 18 | 17 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 19 | 18 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 20 | 17 | oveqd 6667 |
. . . . . . . . . . . 12
|
| 21 | 20 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 22 | 19, 21 | anbi12d 747 |
. . . . . . . . . 10
|
| 23 | 15 | adantr 481 |
. . . . . . . . . . 11
|
| 24 | 17 | oveqdr 6674 |
. . . . . . . . . . . . 13
|
| 25 | 24 | eleq2d 2687 |
. . . . . . . . . . . 12
|
| 26 | 17 | oveqdr 6674 |
. . . . . . . . . . . . 13
|
| 27 | 26 | eleq2d 2687 |
. . . . . . . . . . . 12
|
| 28 | 25, 27 | anbi12d 747 |
. . . . . . . . . . 11
|
| 29 | 23, 28 | rexeqbidva 3155 |
. . . . . . . . . 10
|
| 30 | 22, 29 | imbi12d 334 |
. . . . . . . . 9
|
| 31 | 15, 30 | raleqbidva 3154 |
. . . . . . . 8
|
| 32 | 14, 31 | raleqbidva 3154 |
. . . . . . 7
|
| 33 | 13, 32 | raleqbidva 3154 |
. . . . . 6
|
| 34 | 5, 33 | raleqbidva 3154 |
. . . . 5
|
| 35 | 4, 34 | raleqbidva 3154 |
. . . 4
|
| 36 | 4 | pweqd 4163 |
. . . . 5
|
| 37 | 36 | adantr 481 |
. . . . . 6
|
| 38 | 4 | ad2antrr 762 |
. . . . . . . 8
|
| 39 | simp-4r 807 |
. . . . . . . . . . . 12
| |
| 40 | 39 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 41 | 40 | oveqd 6667 |
. . . . . . . . . 10
|
| 42 | 41 | eleq2d 2687 |
. . . . . . . . 9
|
| 43 | 42 | 2ralbidv 2989 |
. . . . . . . 8
|
| 44 | 38, 43 | rexeqbidva 3155 |
. . . . . . 7
|
| 45 | simp-4r 807 |
. . . . . . . . . . . 12
| |
| 46 | 45 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 47 | 46 | oveqd 6667 |
. . . . . . . . . 10
|
| 48 | 47 | eleq2d 2687 |
. . . . . . . . 9
|
| 49 | 48 | 2ralbidv 2989 |
. . . . . . . 8
|
| 50 | 38, 49 | rexeqbidva 3155 |
. . . . . . 7
|
| 51 | 44, 50 | imbi12d 334 |
. . . . . 6
|
| 52 | 37, 51 | raleqbidva 3154 |
. . . . 5
|
| 53 | 36, 52 | raleqbidva 3154 |
. . . 4
|
| 54 | 12, 35, 53 | 3anbi123d 1399 |
. . 3
|
| 55 | 1, 2, 54 | sbcie2s 15916 |
. 2
|
| 56 | df-trkgb 25348 |
. 2
| |
| 57 | 55, 56 | elab4g 3355 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-trkgb 25348 |
| This theorem is referenced by: axtgbtwnid 25365 axtgpasch 25366 axtgcont1 25367 f1otrg 25751 eengtrkg 25865 |
| Copyright terms: Public domain | W3C validator |