Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfc0 Structured version   Visualization version   Unicode version

Theorem ballotlemfc0 30554
Description:  F takes value 0 between negative and positive values. (Contributed by Thierry Arnoux, 24-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotlemfp1.c  |-  ( ph  ->  C  e.  O )
ballotlemfp1.j  |-  ( ph  ->  J  e.  NN )
ballotlemfc0.3  |-  ( ph  ->  E. i  e.  ( 1 ... J ) ( ( F `  C ) `  i
)  <_  0 )
ballotlemfc0.4  |-  ( ph  ->  0  <  ( ( F `  C ) `
 J ) )
Assertion
Ref Expression
ballotlemfc0  |-  ( ph  ->  E. k  e.  ( 1 ... J ) ( ( F `  C ) `  k
)  =  0 )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F    k, F    C, i    i, J    ph, i, k    k, J    C, k    ph, k
Allowed substitution hints:    ph( x, c)    C( x, c)    P( x, i, k, c)    F( x)    J( x, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemfc0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7  |-  ( i  =  k  ->  (
( F `  C
) `  i )  =  ( ( F `
 C ) `  k ) )
21breq1d 4663 . . . . . 6  |-  ( i  =  k  ->  (
( ( F `  C ) `  i
)  <_  0  <->  ( ( F `  C ) `  k )  <_  0
) )
32elrab 3363 . . . . 5  |-  ( k  e.  { i  e.  ( 1 ... J
)  |  ( ( F `  C ) `
 i )  <_ 
0 }  <->  ( k  e.  ( 1 ... J
)  /\  ( ( F `  C ) `  k )  <_  0
) )
43anbi1i 731 . . . 4  |-  ( ( k  e.  { i  e.  ( 1 ... J )  |  ( ( F `  C
) `  i )  <_  0 }  /\  A. j  e.  { i  e.  ( 1 ... J
)  |  ( ( F `  C ) `
 i )  <_ 
0 } j  <_ 
k )  <->  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )
5 simprlr 803 . . . . 5  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  (
( F `  C
) `  k )  <_  0 )
6 simprl 794 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  ( ( F `  C ) `  k )  <_  0
) )  ->  k  e.  ( 1 ... J
) )
76adantrr 753 . . . . . . . . 9  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  k  e.  ( 1 ... J
) )
8 fzssuz 12382 . . . . . . . . . . . . . 14  |-  ( 1 ... J )  C_  ( ZZ>= `  1 )
9 uzssz 11707 . . . . . . . . . . . . . 14  |-  ( ZZ>= ` 
1 )  C_  ZZ
108, 9sstri 3612 . . . . . . . . . . . . 13  |-  ( 1 ... J )  C_  ZZ
11 zssre 11384 . . . . . . . . . . . . 13  |-  ZZ  C_  RR
1210, 11sstri 3612 . . . . . . . . . . . 12  |-  ( 1 ... J )  C_  RR
1312sseli 3599 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... J )  ->  k  e.  RR )
1413ltp1d 10954 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... J )  ->  k  <  ( k  +  1 ) )
15 1red 10055 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... J )  ->  1  e.  RR )
1613, 15readdcld 10069 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... J )  ->  (
k  +  1 )  e.  RR )
1713, 16ltnled 10184 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... J )  ->  (
k  <  ( k  +  1 )  <->  -.  (
k  +  1 )  <_  k ) )
1814, 17mpbid 222 . . . . . . . . 9  |-  ( k  e.  ( 1 ... J )  ->  -.  ( k  +  1 )  <_  k )
197, 18syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  -.  ( k  +  1 )  <_  k )
20 simprr 796 . . . . . . . . 9  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  A. j  e.  { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
)
21 ballotlemfc0.4 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  ( ( F `  C ) `
 J ) )
2221adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  =  J )  ->  0  <  ( ( F `  C ) `  J
) )
23 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  =  J )  ->  k  =  J )
2423fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  =  J )  ->  (
( F `  C
) `  k )  =  ( ( F `
 C ) `  J ) )
2524breq2d 4665 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  =  J )  ->  (
0  <  ( ( F `  C ) `  k )  <->  0  <  ( ( F `  C
) `  J )
) )
26 ballotlemfp1.j . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  J  e.  NN )
27 elnnuz 11724 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( J  e.  NN  <->  J  e.  ( ZZ>= `  1 )
)
2826, 27sylib 208 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  J  e.  ( ZZ>= ` 
1 ) )
29 eluzfz2 12349 . . . . . . . . . . . . . . . . . . . . 21  |-  ( J  e.  ( ZZ>= `  1
)  ->  J  e.  ( 1 ... J
) )
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  J  e.  ( 1 ... J ) )
31 eleq1 2689 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  J  ->  (
k  e.  ( 1 ... J )  <->  J  e.  ( 1 ... J
) ) )
3230, 31syl5ibrcom 237 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( k  =  J  ->  k  e.  ( 1 ... J ) ) )
3332anc2li 580 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( k  =  J  ->  ( ph  /\  k  e.  ( 1 ... J ) ) ) )
34 1eluzge0 11732 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  ( ZZ>= `  0 )
35 fzss1 12380 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... J )  C_  ( 0 ... J
) )
3635sseld 3602 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( k  e.  ( 1 ... J
)  ->  k  e.  ( 0 ... J
) ) )
3734, 36ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... J )  ->  k  e.  ( 0 ... J
) )
38 0red 10041 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  0  e.  RR )
39 ballotth.m . . . . . . . . . . . . . . . . . . . . . 22  |-  M  e.  NN
40 ballotth.n . . . . . . . . . . . . . . . . . . . . . 22  |-  N  e.  NN
41 ballotth.o . . . . . . . . . . . . . . . . . . . . . 22  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
42 ballotth.p . . . . . . . . . . . . . . . . . . . . . 22  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
43 ballotth.f . . . . . . . . . . . . . . . . . . . . . 22  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
44 ballotlemfp1.c . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  C  e.  O )
4544adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  C  e.  O )
46 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( 0 ... J )  ->  k  e.  ZZ )
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  k  e.  ZZ )
4839, 40, 41, 42, 43, 45, 47ballotlemfelz 30552 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  (
( F `  C
) `  k )  e.  ZZ )
4948zred 11482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  (
( F `  C
) `  k )  e.  RR )
5038, 49ltnled 10184 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  (
0  <  ( ( F `  C ) `  k )  <->  -.  (
( F `  C
) `  k )  <_  0 ) )
5137, 50sylan2 491 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( 1 ... J
) )  ->  (
0  <  ( ( F `  C ) `  k )  <->  -.  (
( F `  C
) `  k )  <_  0 ) )
5233, 51syl6 35 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( k  =  J  ->  ( 0  < 
( ( F `  C ) `  k
)  <->  -.  ( ( F `  C ) `  k )  <_  0
) ) )
5352imp 445 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  =  J )  ->  (
0  <  ( ( F `  C ) `  k )  <->  -.  (
( F `  C
) `  k )  <_  0 ) )
5425, 53bitr3d 270 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  =  J )  ->  (
0  <  ( ( F `  C ) `  J )  <->  -.  (
( F `  C
) `  k )  <_  0 ) )
5522, 54mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  =  J )  ->  -.  ( ( F `  C ) `  k
)  <_  0 )
5655ex 450 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  =  J  ->  -.  ( ( F `  C ) `  k )  <_  0
) )
5756con2d 129 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( F `
 C ) `  k )  <_  0  ->  -.  k  =  J ) )
58 nn1m1nn 11040 . . . . . . . . . . . . . . . . . . . . 21  |-  ( J  e.  NN  ->  ( J  =  1  \/  ( J  -  1
)  e.  NN ) )
5926, 58syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( J  =  1  \/  ( J  - 
1 )  e.  NN ) )
60 ballotlemfc0.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  E. i  e.  ( 1 ... J ) ( ( F `  C ) `  i
)  <_  0 )
6160adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  J  = 
1 )  ->  E. i  e.  ( 1 ... J
) ( ( F `
 C ) `  i )  <_  0
)
62 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( J  =  1  ->  ( J ... J )  =  ( 1 ... J
) )
6362adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  J  = 
1 )  ->  ( J ... J )  =  ( 1 ... J
) )
6426nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  J  e.  ZZ )
65 fzsn 12383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( J  e.  ZZ  ->  ( J ... J )  =  { J } )
6664, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( J ... J
)  =  { J } )
6766adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  J  = 
1 )  ->  ( J ... J )  =  { J } )
6863, 67eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  J  = 
1 )  ->  (
1 ... J )  =  { J } )
6968rexeqdv 3145 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  J  = 
1 )  ->  ( E. i  e.  (
1 ... J ) ( ( F `  C
) `  i )  <_  0  <->  E. i  e.  { J }  ( ( F `  C ) `  i )  <_  0
) )
7061, 69mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  J  = 
1 )  ->  E. i  e.  { J }  (
( F `  C
) `  i )  <_  0 )
71 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( i  =  J  ->  (
( F `  C
) `  i )  =  ( ( F `
 C ) `  J ) )
7271breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( i  =  J  ->  (
( ( F `  C ) `  i
)  <_  0  <->  ( ( F `  C ) `  J )  <_  0
) )
7372rexsng 4219 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( J  e.  NN  ->  ( E. i  e.  { J }  ( ( F `
 C ) `  i )  <_  0  <->  ( ( F `  C
) `  J )  <_  0 ) )
7426, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( E. i  e. 
{ J }  (
( F `  C
) `  i )  <_  0  <->  ( ( F `
 C ) `  J )  <_  0
) )
7574adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  J  = 
1 )  ->  ( E. i  e.  { J }  ( ( F `
 C ) `  i )  <_  0  <->  ( ( F `  C
) `  J )  <_  0 ) )
7670, 75mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  J  = 
1 )  ->  (
( F `  C
) `  J )  <_  0 )
7721adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  J  = 
1 )  ->  0  <  ( ( F `  C ) `  J
) )
78 0red 10041 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  0  e.  RR )
7939, 40, 41, 42, 43, 44, 64ballotlemfelz 30552 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( ( F `  C ) `  J
)  e.  ZZ )
8079zred 11482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( F `  C ) `  J
)  e.  RR )
8178, 80ltnled 10184 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( 0  <  (
( F `  C
) `  J )  <->  -.  ( ( F `  C ) `  J
)  <_  0 ) )
8281adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  J  = 
1 )  ->  (
0  <  ( ( F `  C ) `  J )  <->  -.  (
( F `  C
) `  J )  <_  0 ) )
8377, 82mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  J  = 
1 )  ->  -.  ( ( F `  C ) `  J
)  <_  0 )
8476, 83pm2.65da 600 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  -.  J  =  1 )
85 biortn 421 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  J  =  1  -> 
( ( J  - 
1 )  e.  NN  <->  ( -.  -.  J  =  1  \/  ( J  -  1 )  e.  NN ) ) )
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( J  - 
1 )  e.  NN  <->  ( -.  -.  J  =  1  \/  ( J  -  1 )  e.  NN ) ) )
87 notnotb 304 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( J  =  1  <->  -.  -.  J  =  1 )
8887orbi1i 542 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  =  1  \/  ( J  -  1 )  e.  NN )  <-> 
( -.  -.  J  =  1  \/  ( J  -  1 )  e.  NN ) )
8986, 88syl6bbr 278 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( J  - 
1 )  e.  NN  <->  ( J  =  1  \/  ( J  -  1 )  e.  NN ) ) )
9059, 89mpbird 247 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( J  -  1 )  e.  NN )
91 elnnuz 11724 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  -  1 )  e.  NN  <->  ( J  -  1 )  e.  ( ZZ>= `  1 )
)
9290, 91sylib 208 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( J  -  1 )  e.  ( ZZ>= ` 
1 ) )
93 elfzp1 12391 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  -  1 )  e.  ( ZZ>= `  1
)  ->  ( k  e.  ( 1 ... (
( J  -  1 )  +  1 ) )  <->  ( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  ( ( J  - 
1 )  +  1 ) ) ) )
9492, 93syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( k  e.  ( 1 ... ( ( J  -  1 )  +  1 ) )  <-> 
( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  ( ( J  -  1 )  +  1 ) ) ) )
9526nncnd 11036 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  J  e.  CC )
96 1cnd 10056 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  1  e.  CC )
9795, 96npcand 10396 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( J  - 
1 )  +  1 )  =  J )
9897oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1 ... (
( J  -  1 )  +  1 ) )  =  ( 1 ... J ) )
9998eleq2d 2687 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( k  e.  ( 1 ... ( ( J  -  1 )  +  1 ) )  <-> 
k  e.  ( 1 ... J ) ) )
10097eqeq2d 2632 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( k  =  ( ( J  -  1 )  +  1 )  <-> 
k  =  J ) )
101100orbi2d 738 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  ( ( J  - 
1 )  +  1 ) )  <->  ( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  J ) ) )
10294, 99, 1013bitr3d 298 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( k  e.  ( 1 ... J )  <-> 
( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  J ) ) )
103 orcom 402 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ( 1 ... ( J  - 
1 ) )  \/  k  =  J )  <-> 
( k  =  J  \/  k  e.  ( 1 ... ( J  -  1 ) ) ) )
104102, 103syl6bb 276 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( k  e.  ( 1 ... J )  <-> 
( k  =  J  \/  k  e.  ( 1 ... ( J  -  1 ) ) ) ) )
105104biimpd 219 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  ( 1 ... J )  ->  ( k  =  J  \/  k  e.  ( 1 ... ( J  -  1 ) ) ) ) )
106 pm5.6 951 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  ( 1 ... J )  /\  -.  k  =  J )  ->  k  e.  ( 1 ... ( J  -  1 ) ) )  <->  ( k  e.  ( 1 ... J
)  ->  ( k  =  J  \/  k  e.  ( 1 ... ( J  -  1 ) ) ) ) )
107105, 106sylibr 224 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( k  e.  ( 1 ... J
)  /\  -.  k  =  J )  ->  k  e.  ( 1 ... ( J  -  1 ) ) ) )
10890nnzd 11481 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( J  -  1 )  e.  ZZ )
109 1z 11407 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  ZZ
110108, 109jctil 560 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1  e.  ZZ  /\  ( J  -  1 )  e.  ZZ ) )
111 elfzelz 12342 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... ( J  -  1 ) )  ->  k  e.  ZZ )
112111, 109jctir 561 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 1 ... ( J  -  1 ) )  ->  (
k  e.  ZZ  /\  1  e.  ZZ )
)
113 fzaddel 12375 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1  e.  ZZ  /\  ( J  -  1 )  e.  ZZ )  /\  ( k  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( k  e.  ( 1 ... ( J  -  1 ) )  <-> 
( k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  -  1 )  +  1 ) ) ) )
114110, 112, 113syl2an 494 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
k  e.  ( 1 ... ( J  - 
1 ) )  <->  ( k  +  1 )  e.  ( ( 1  +  1 ) ... (
( J  -  1 )  +  1 ) ) ) )
115114biimp3a 1432 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) )  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  - 
1 )  +  1 ) ) )
1161153anidm23 1385 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  - 
1 )  +  1 ) ) )
117 1p1e2 11134 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  +  1 )  =  2
118117a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 1  +  1 )  =  2 )
119118, 97oveq12d 6668 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1  +  1 ) ... (
( J  -  1 )  +  1 ) )  =  ( 2 ... J ) )
120119eleq2d 2687 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  -  1 )  +  1 ) )  <-> 
( k  +  1 )  e.  ( 2 ... J ) ) )
121 2eluzge1 11734 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  ( ZZ>= `  1 )
122 fzss1 12380 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( 2 ... J )  C_  ( 1 ... J
) )
123121, 122ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( 2 ... J )  C_  ( 1 ... J
)
124123sseli 3599 . . . . . . . . . . . . . . . . 17  |-  ( ( k  +  1 )  e.  ( 2 ... J )  ->  (
k  +  1 )  e.  ( 1 ... J ) )
125120, 124syl6bi 243 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  -  1 )  +  1 ) )  ->  ( k  +  1 )  e.  ( 1 ... J ) ) )
126125adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
( k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  -  1 )  +  1 ) )  -> 
( k  +  1 )  e.  ( 1 ... J ) ) )
127116, 126mpd 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
k  +  1 )  e.  ( 1 ... J ) )
128127ex 450 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  ( 1 ... ( J  -  1 ) )  ->  ( k  +  1 )  e.  ( 1 ... J ) ) )
129107, 128syld 47 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( k  e.  ( 1 ... J
)  /\  -.  k  =  J )  ->  (
k  +  1 )  e.  ( 1 ... J ) ) )
13057, 129sylan2d 499 . . . . . . . . . . 11  |-  ( ph  ->  ( ( k  e.  ( 1 ... J
)  /\  ( ( F `  C ) `  k )  <_  0
)  ->  ( k  +  1 )  e.  ( 1 ... J
) ) )
131130imp 445 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  ( ( F `  C ) `  k )  <_  0
) )  ->  (
k  +  1 )  e.  ( 1 ... J ) )
132131adantrr 753 . . . . . . . . 9  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  (
k  +  1 )  e.  ( 1 ... J ) )
133 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( i  =  ( k  +  1 )  ->  (
( F `  C
) `  i )  =  ( ( F `
 C ) `  ( k  +  1 ) ) )
134133breq1d 4663 . . . . . . . . . . . . 13  |-  ( i  =  ( k  +  1 )  ->  (
( ( F `  C ) `  i
)  <_  0  <->  ( ( F `  C ) `  ( k  +  1 ) )  <_  0
) )
135134elrab 3363 . . . . . . . . . . . 12  |-  ( ( k  +  1 )  e.  { i  e.  ( 1 ... J
)  |  ( ( F `  C ) `
 i )  <_ 
0 }  <->  ( (
k  +  1 )  e.  ( 1 ... J )  /\  (
( F `  C
) `  ( k  +  1 ) )  <_  0 ) )
136 breq1 4656 . . . . . . . . . . . . 13  |-  ( j  =  ( k  +  1 )  ->  (
j  <_  k  <->  ( k  +  1 )  <_ 
k ) )
137136rspccva 3308 . . . . . . . . . . . 12  |-  ( ( A. j  e.  {
i  e.  ( 1 ... J )  |  ( ( F `  C ) `  i
)  <_  0 }
j  <_  k  /\  ( k  +  1 )  e.  { i  e.  ( 1 ... J )  |  ( ( F `  C
) `  i )  <_  0 } )  -> 
( k  +  1 )  <_  k )
138135, 137sylan2br 493 . . . . . . . . . . 11  |-  ( ( A. j  e.  {
i  e.  ( 1 ... J )  |  ( ( F `  C ) `  i
)  <_  0 }
j  <_  k  /\  ( ( k  +  1 )  e.  ( 1 ... J )  /\  ( ( F `
 C ) `  ( k  +  1 ) )  <_  0
) )  ->  (
k  +  1 )  <_  k )
139138expr 643 . . . . . . . . . 10  |-  ( ( A. j  e.  {
i  e.  ( 1 ... J )  |  ( ( F `  C ) `  i
)  <_  0 }
j  <_  k  /\  ( k  +  1 )  e.  ( 1 ... J ) )  ->  ( ( ( F `  C ) `
 ( k  +  1 ) )  <_ 
0  ->  ( k  +  1 )  <_ 
k ) )
140139con3d 148 . . . . . . . . 9  |-  ( ( A. j  e.  {
i  e.  ( 1 ... J )  |  ( ( F `  C ) `  i
)  <_  0 }
j  <_  k  /\  ( k  +  1 )  e.  ( 1 ... J ) )  ->  ( -.  (
k  +  1 )  <_  k  ->  -.  ( ( F `  C ) `  (
k  +  1 ) )  <_  0 ) )
14120, 132, 140syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  ( -.  ( k  +  1 )  <_  k  ->  -.  ( ( F `  C ) `  (
k  +  1 ) )  <_  0 ) )
14219, 141mpd 15 . . . . . . 7  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  -.  ( ( F `  C ) `  (
k  +  1 ) )  <_  0 )
143 simplrr 801 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  ( ( F `
 C ) `  k )  <_  0
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  /\  -.  ( k  +  1 )  e.  C )  ->  A. j  e.  {
i  e.  ( 1 ... J )  |  ( ( F `  C ) `  i
)  <_  0 }
j  <_  k )
144132adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  ( ( F `
 C ) `  k )  <_  0
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  /\  -.  ( k  +  1 )  e.  C )  ->  ( k  +  1 )  e.  ( 1 ... J ) )
145 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  ->  ph )
146131adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
( k  +  1 )  e.  ( 1 ... J ) )
14735sseld 3602 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( (
k  +  1 )  e.  ( 1 ... J )  ->  (
k  +  1 )  e.  ( 0 ... J ) ) )
14834, 146, 147mpsyl 68 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
( k  +  1 )  e.  ( 0 ... J ) )
14944adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 0 ... J
) )  ->  C  e.  O )
150 elfzelz 12342 . . . . . . . . . . . . . . . . 17  |-  ( ( k  +  1 )  e.  ( 0 ... J )  ->  (
k  +  1 )  e.  ZZ )
151150adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 0 ... J
) )  ->  (
k  +  1 )  e.  ZZ )
15239, 40, 41, 42, 43, 149, 151ballotlemfelz 30552 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 0 ... J
) )  ->  (
( F `  C
) `  ( k  +  1 ) )  e.  ZZ )
153152zred 11482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 0 ... J
) )  ->  (
( F `  C
) `  ( k  +  1 ) )  e.  RR )
154145, 148, 153syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
( ( F `  C ) `  (
k  +  1 ) )  e.  RR )
155 0red 10041 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
0  e.  RR )
156 simplrr 801 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
( ( F `  C ) `  k
)  <_  0 )
1576adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
k  e.  ( 1 ... J ) )
158157, 37syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
k  e.  ( 0 ... J ) )
159130imdistani 726 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  ( ( F `  C ) `  k )  <_  0
) )  ->  ( ph  /\  ( k  +  1 )  e.  ( 1 ... J ) ) )
16044adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  C  e.  O )
161 elfznn 12370 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  +  1 )  e.  ( 1 ... J )  ->  (
k  +  1 )  e.  NN )
162161adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  (
k  +  1 )  e.  NN )
16339, 40, 41, 42, 43, 160, 162ballotlemfp1 30553 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  (
( -.  ( k  +  1 )  e.  C  ->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  -  1 ) )  /\  ( ( k  +  1 )  e.  C  ->  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 ( ( k  +  1 )  - 
1 ) )  +  1 ) ) ) )
164163simpld 475 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  ( -.  ( k  +  1 )  e.  C  -> 
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  -  1 ) ) )
165164imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  +  1 )  e.  ( 1 ... J ) )  /\  -.  ( k  +  1 )  e.  C )  ->  ( ( F `
 C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  -  1 ) )
166159, 165sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  -  1 ) )
167 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ( 1 ... J )  ->  k  e.  ZZ )
168167zcnd 11483 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( 1 ... J )  ->  k  e.  CC )
169 1cnd 10056 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( 1 ... J )  ->  1  e.  CC )
170168, 169pncand 10393 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( 1 ... J )  ->  (
( k  +  1 )  -  1 )  =  k )
171170fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... J )  ->  (
( F `  C
) `  ( (
k  +  1 )  -  1 ) )  =  ( ( F `
 C ) `  k ) )
172171oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 1 ... J )  ->  (
( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  -  1 )  =  ( ( ( F `  C ) `
 k )  - 
1 ) )
173172eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 1 ... J )  ->  (
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  -  1 )  <->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  -  1 ) ) )
174157, 173syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
( ( ( F `
 C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  -  1 )  <-> 
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  k )  -  1 ) ) )
175166, 174mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  k )  -  1 ) )
176 0z 11388 . . . . . . . . . . . . . . . . . 18  |-  0  e.  ZZ
177 zlem1lt 11429 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F `  C ) `  k
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( ( F `
 C ) `  k )  <_  0  <->  ( ( ( F `  C ) `  k
)  -  1 )  <  0 ) )
17848, 176, 177sylancl 694 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  (
( ( F `  C ) `  k
)  <_  0  <->  ( (
( F `  C
) `  k )  -  1 )  <  0 ) )
179178adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... J
) )  /\  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  - 
1 ) )  -> 
( ( ( F `
 C ) `  k )  <_  0  <->  ( ( ( F `  C ) `  k
)  -  1 )  <  0 ) )
180 breq1 4656 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  - 
1 )  ->  (
( ( F `  C ) `  (
k  +  1 ) )  <  0  <->  (
( ( F `  C ) `  k
)  -  1 )  <  0 ) )
181180adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... J
) )  /\  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  - 
1 ) )  -> 
( ( ( F `
 C ) `  ( k  +  1 ) )  <  0  <->  ( ( ( F `  C ) `  k
)  -  1 )  <  0 ) )
182179, 181bitr4d 271 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... J
) )  /\  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  - 
1 ) )  -> 
( ( ( F `
 C ) `  k )  <_  0  <->  ( ( F `  C
) `  ( k  +  1 ) )  <  0 ) )
183145, 158, 175, 182syl21anc 1325 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
( ( ( F `
 C ) `  k )  <_  0  <->  ( ( F `  C
) `  ( k  +  1 ) )  <  0 ) )
184156, 183mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
( ( F `  C ) `  (
k  +  1 ) )  <  0 )
185154, 155, 184ltled 10185 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  -.  (
k  +  1 )  e.  C )  -> 
( ( F `  C ) `  (
k  +  1 ) )  <_  0 )
186185adantlrr 757 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  ( ( F `
 C ) `  k )  <_  0
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  /\  -.  ( k  +  1 )  e.  C )  ->  ( ( F `
 C ) `  ( k  +  1 ) )  <_  0
)
187143, 144, 186, 138syl12anc 1324 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  ( ( F `
 C ) `  k )  <_  0
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  /\  -.  ( k  +  1 )  e.  C )  ->  ( k  +  1 )  <_  k
)
18819adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  ( ( F `
 C ) `  k )  <_  0
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  /\  -.  ( k  +  1 )  e.  C )  ->  -.  ( k  +  1 )  <_ 
k )
189187, 188condan 835 . . . . . . . . 9  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  (
k  +  1 )  e.  C )
190163simprd 479 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  (
( k  +  1 )  e.  C  -> 
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  +  1 ) ) )
191190imp 445 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  +  1 )  e.  ( 1 ... J ) )  /\  ( k  +  1 )  e.  C )  ->  ( ( F `
 C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  +  1 ) )
192159, 191sylan 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  ( k  +  1 )  e.  C )  ->  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 ( ( k  +  1 )  - 
1 ) )  +  1 ) )
1936adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  ( k  +  1 )  e.  C )  ->  k  e.  ( 1 ... J
) )
194171oveq1d 6665 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... J )  ->  (
( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  +  1 )  =  ( ( ( F `  C ) `
 k )  +  1 ) )
195194eqeq2d 2632 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... J )  ->  (
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  +  1 )  <->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  +  1 ) ) )
196193, 195syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  ( k  +  1 )  e.  C )  ->  (
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  +  1 )  <->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  +  1 ) ) )
197192, 196mpbid 222 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 ) )  /\  ( k  +  1 )  e.  C )  ->  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  +  1 ) )
198197adantlrr 757 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  ( ( F `
 C ) `  k )  <_  0
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  /\  (
k  +  1 )  e.  C )  -> 
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  k )  +  1 ) )
199189, 198mpdan 702 . . . . . . . 8  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  +  1 ) )
200 breq1 4656 . . . . . . . . 9  |-  ( ( ( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  +  1 )  ->  (
( ( F `  C ) `  (
k  +  1 ) )  <_  0  <->  ( (
( F `  C
) `  k )  +  1 )  <_ 
0 ) )
201200notbid 308 . . . . . . . 8  |-  ( ( ( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  +  1 )  ->  ( -.  ( ( F `  C ) `  (
k  +  1 ) )  <_  0  <->  -.  (
( ( F `  C ) `  k
)  +  1 )  <_  0 ) )
202199, 201syl 17 . . . . . . 7  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  ( -.  ( ( F `  C ) `  (
k  +  1 ) )  <_  0  <->  -.  (
( ( F `  C ) `  k
)  +  1 )  <_  0 ) )
203142, 202mpbid 222 . . . . . 6  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  -.  ( ( ( F `
 C ) `  k )  +  1 )  <_  0 )
2046, 37syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  ( ( F `  C ) `  k )  <_  0
) )  ->  k  e.  ( 0 ... J
) )
205204, 48syldan 487 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  ( ( F `  C ) `  k )  <_  0
) )  ->  (
( F `  C
) `  k )  e.  ZZ )
206205adantrr 753 . . . . . . 7  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  (
( F `  C
) `  k )  e.  ZZ )
207 zleltp1 11428 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( ( F `  C ) `  k
)  e.  ZZ )  ->  ( 0  <_ 
( ( F `  C ) `  k
)  <->  0  <  (
( ( F `  C ) `  k
)  +  1 ) ) )
208176, 207mpan 706 . . . . . . . 8  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( 0  <_  ( ( F `
 C ) `  k )  <->  0  <  ( ( ( F `  C ) `  k
)  +  1 ) ) )
209 0red 10041 . . . . . . . . 9  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  0  e.  RR )
210 zre 11381 . . . . . . . . . 10  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( ( F `  C ) `  k )  e.  RR )
211 1red 10055 . . . . . . . . . 10  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  1  e.  RR )
212210, 211readdcld 10069 . . . . . . . . 9  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( (
( F `  C
) `  k )  +  1 )  e.  RR )
213209, 212ltnled 10184 . . . . . . . 8  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( 0  <  ( ( ( F `  C ) `
 k )  +  1 )  <->  -.  (
( ( F `  C ) `  k
)  +  1 )  <_  0 ) )
214208, 213bitrd 268 . . . . . . 7  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( 0  <_  ( ( F `
 C ) `  k )  <->  -.  (
( ( F `  C ) `  k
)  +  1 )  <_  0 ) )
215206, 214syl 17 . . . . . 6  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  (
0  <_  ( ( F `  C ) `  k )  <->  -.  (
( ( F `  C ) `  k
)  +  1 )  <_  0 ) )
216203, 215mpbird 247 . . . . 5  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  0  <_  ( ( F `  C ) `  k
) )
217206zred 11482 . . . . . 6  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  (
( F `  C
) `  k )  e.  RR )
218 0red 10041 . . . . . 6  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  0  e.  RR )
219217, 218letri3d 10179 . . . . 5  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  (
( ( F `  C ) `  k
)  =  0  <->  (
( ( F `  C ) `  k
)  <_  0  /\  0  <_  ( ( F `
 C ) `  k ) ) ) )
2205, 216, 219mpbir2and 957 . . . 4  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  ( ( F `  C ) `  k
)  <_  0 )  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  (
( F `  C
) `  k )  =  0 )
2214, 220sylan2b 492 . . 3  |-  ( (
ph  /\  ( k  e.  { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 }  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
) )  ->  (
( F `  C
) `  k )  =  0 )
222 ssrab2 3687 . . . . . 6  |-  { i  e.  ( 1 ... J )  |  ( ( F `  C
) `  i )  <_  0 }  C_  (
1 ... J )
223222, 12sstri 3612 . . . . 5  |-  { i  e.  ( 1 ... J )  |  ( ( F `  C
) `  i )  <_  0 }  C_  RR
224223a1i 11 . . . 4  |-  ( ph  ->  { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 }  C_  RR )
225 fzfi 12771 . . . . . 6  |-  ( 1 ... J )  e. 
Fin
226 ssfi 8180 . . . . . 6  |-  ( ( ( 1 ... J
)  e.  Fin  /\  { i  e.  ( 1 ... J )  |  ( ( F `  C ) `  i
)  <_  0 }  C_  ( 1 ... J
) )  ->  { i  e.  ( 1 ... J )  |  ( ( F `  C
) `  i )  <_  0 }  e.  Fin )
227225, 222, 226mp2an 708 . . . . 5  |-  { i  e.  ( 1 ... J )  |  ( ( F `  C
) `  i )  <_  0 }  e.  Fin
228227a1i 11 . . . 4  |-  ( ph  ->  { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 }  e.  Fin )
229 rabn0 3958 . . . . 5  |-  ( { i  e.  ( 1 ... J )  |  ( ( F `  C ) `  i
)  <_  0 }  =/=  (/)  <->  E. i  e.  ( 1 ... J ) ( ( F `  C ) `  i
)  <_  0 )
23060, 229sylibr 224 . . . 4  |-  ( ph  ->  { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 }  =/=  (/) )
231 fimaxre 10968 . . . 4  |-  ( ( { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 }  C_  RR  /\  {
i  e.  ( 1 ... J )  |  ( ( F `  C ) `  i
)  <_  0 }  e.  Fin  /\  { i  e.  ( 1 ... J )  |  ( ( F `  C
) `  i )  <_  0 }  =/=  (/) )  ->  E. k  e.  { i  e.  ( 1 ... J )  |  ( ( F `  C
) `  i )  <_  0 } A. j  e.  { i  e.  ( 1 ... J )  |  ( ( F `
 C ) `  i )  <_  0 } j  <_  k
)
232224, 228, 230, 231syl3anc 1326 . . 3  |-  ( ph  ->  E. k  e.  {
i  e.  ( 1 ... J )  |  ( ( F `  C ) `  i
)  <_  0 } A. j  e.  { i  e.  ( 1 ... J )  |  ( ( F `  C
) `  i )  <_  0 } j  <_ 
k )
233221, 232reximddv 3018 . 2  |-  ( ph  ->  E. k  e.  {
i  e.  ( 1 ... J )  |  ( ( F `  C ) `  i
)  <_  0 } 
( ( F `  C ) `  k
)  =  0 )
234 elrabi 3359 . . . 4  |-  ( k  e.  { i  e.  ( 1 ... J
)  |  ( ( F `  C ) `
 i )  <_ 
0 }  ->  k  e.  ( 1 ... J
) )
235234anim1i 592 . . 3  |-  ( ( k  e.  { i  e.  ( 1 ... J )  |  ( ( F `  C
) `  i )  <_  0 }  /\  (
( F `  C
) `  k )  =  0 )  -> 
( k  e.  ( 1 ... J )  /\  ( ( F `
 C ) `  k )  =  0 ) )
236235reximi2 3010 . 2  |-  ( E. k  e.  { i  e.  ( 1 ... J )  |  ( ( F `  C
) `  i )  <_  0 }  ( ( F `  C ) `
 k )  =  0  ->  E. k  e.  ( 1 ... J
) ( ( F `
 C ) `  k )  =  0 )
237233, 236syl 17 1  |-  ( ph  ->  E. k  e.  ( 1 ... J ) ( ( F `  C ) `  k
)  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  ballotlem5  30561  ballotlemic  30568
  Copyright terms: Public domain W3C validator