Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneineine1lem Structured version   Visualization version   Unicode version

Theorem ntrneineine1lem 38382
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator,  F, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
ntrnei.f  |-  F  =  ( ~P B O B )
ntrnei.r  |-  ( ph  ->  I F N )
ntrnei.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
ntrneineine1lem  |-  ( ph  ->  ( E. s  e. 
~P  B  -.  X  e.  ( I `  s
)  <->  ( N `  X )  =/=  ~P B ) )
Distinct variable groups:    B, i,
j, k, l, m, s    k, I, l, m    N, s    X, l, m, s    ph, i,
j, k, l, s
Allowed substitution hints:    ph( m)    F( i, j, k, m, s, l)    I( i, j, s)    N( i, j, k, m, l)    O( i, j, k, m, s, l)    X( i, j, k)

Proof of Theorem ntrneineine1lem
StepHypRef Expression
1 ntrnei.o . . . . 5  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
2 ntrnei.f . . . . 5  |-  F  =  ( ~P B O B )
3 ntrnei.r . . . . . 6  |-  ( ph  ->  I F N )
43adantr 481 . . . . 5  |-  ( (
ph  /\  s  e.  ~P B )  ->  I F N )
5 ntrnei.x . . . . . 6  |-  ( ph  ->  X  e.  B )
65adantr 481 . . . . 5  |-  ( (
ph  /\  s  e.  ~P B )  ->  X  e.  B )
7 simpr 477 . . . . 5  |-  ( (
ph  /\  s  e.  ~P B )  ->  s  e.  ~P B )
81, 2, 4, 6, 7ntrneiel 38379 . . . 4  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( X  e.  ( I `  s )  <->  s  e.  ( N `  X ) ) )
98notbid 308 . . 3  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( -.  X  e.  (
I `  s )  <->  -.  s  e.  ( N `
 X ) ) )
109rexbidva 3049 . 2  |-  ( ph  ->  ( E. s  e. 
~P  B  -.  X  e.  ( I `  s
)  <->  E. s  e.  ~P  B  -.  s  e.  ( N `  X ) ) )
111, 2, 3ntrneinex 38375 . . . . . . 7  |-  ( ph  ->  N  e.  ( ~P ~P B  ^m  B
) )
12 elmapi 7879 . . . . . . 7  |-  ( N  e.  ( ~P ~P B  ^m  B )  ->  N : B --> ~P ~P B )
1311, 12syl 17 . . . . . 6  |-  ( ph  ->  N : B --> ~P ~P B )
1413, 5ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( N `  X
)  e.  ~P ~P B )
1514elpwid 4170 . . . 4  |-  ( ph  ->  ( N `  X
)  C_  ~P B
)
16 biortn 421 . . . 4  |-  ( ( N `  X ) 
C_  ~P B  ->  ( -.  ~P B  C_  ( N `  X )  <->  ( -.  ( N `  X )  C_  ~P B  \/  -.  ~P B  C_  ( N `  X
) ) ) )
1715, 16syl 17 . . 3  |-  ( ph  ->  ( -.  ~P B  C_  ( N `  X
)  <->  ( -.  ( N `  X )  C_ 
~P B  \/  -.  ~P B  C_  ( N `
 X ) ) ) )
18 df-rex 2918 . . . 4  |-  ( E. s  e.  ~P  B  -.  s  e.  ( N `  X )  <->  E. s ( s  e. 
~P B  /\  -.  s  e.  ( N `  X ) ) )
19 nss 3663 . . . 4  |-  ( -. 
~P B  C_  ( N `  X )  <->  E. s ( s  e. 
~P B  /\  -.  s  e.  ( N `  X ) ) )
2018, 19bitr4i 267 . . 3  |-  ( E. s  e.  ~P  B  -.  s  e.  ( N `  X )  <->  -. 
~P B  C_  ( N `  X )
)
21 df-ne 2795 . . . 4  |-  ( ( N `  X )  =/=  ~P B  <->  -.  ( N `  X )  =  ~P B )
22 ianor 509 . . . . 5  |-  ( -.  ( ( N `  X )  C_  ~P B  /\  ~P B  C_  ( N `  X ) )  <->  ( -.  ( N `  X )  C_ 
~P B  \/  -.  ~P B  C_  ( N `
 X ) ) )
23 eqss 3618 . . . . 5  |-  ( ( N `  X )  =  ~P B  <->  ( ( N `  X )  C_ 
~P B  /\  ~P B  C_  ( N `  X ) ) )
2422, 23xchnxbir 323 . . . 4  |-  ( -.  ( N `  X
)  =  ~P B  <->  ( -.  ( N `  X )  C_  ~P B  \/  -.  ~P B  C_  ( N `  X
) ) )
2521, 24bitri 264 . . 3  |-  ( ( N `  X )  =/=  ~P B  <->  ( -.  ( N `  X ) 
C_  ~P B  \/  -.  ~P B  C_  ( N `
 X ) ) )
2617, 20, 253bitr4g 303 . 2  |-  ( ph  ->  ( E. s  e. 
~P  B  -.  s  e.  ( N `  X
)  <->  ( N `  X )  =/=  ~P B ) )
2710, 26bitrd 268 1  |-  ( ph  ->  ( E. s  e. 
~P  B  -.  X  e.  ( I `  s
)  <->  ( N `  X )  =/=  ~P B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  ntrneineine1  38386
  Copyright terms: Public domain W3C validator