Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfcc Structured version   Visualization version   Unicode version

Theorem ballotlemfcc 30555
Description:  F takes value 0 between positive and negative values. (Contributed by Thierry Arnoux, 2-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotlemfcc.c  |-  ( ph  ->  C  e.  O )
ballotlemfcc.j  |-  ( ph  ->  J  e.  NN )
ballotlemfcc.3  |-  ( ph  ->  E. i  e.  ( 1 ... J ) 0  <_  ( ( F `  C ) `  i ) )
ballotlemfcc.4  |-  ( ph  ->  ( ( F `  C ) `  J
)  <  0 )
Assertion
Ref Expression
ballotlemfcc  |-  ( ph  ->  E. k  e.  ( 1 ... J ) ( ( F `  C ) `  k
)  =  0 )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F    k, F    C, i    i, J    ph, i, k    k, J    C, k    ph, k
Allowed substitution hints:    ph( x, c)    C( x, c)    P( x, i, k, c)    F( x)    J( x, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemfcc
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7  |-  ( i  =  k  ->  (
( F `  C
) `  i )  =  ( ( F `
 C ) `  k ) )
21breq2d 4665 . . . . . 6  |-  ( i  =  k  ->  (
0  <_  ( ( F `  C ) `  i )  <->  0  <_  ( ( F `  C
) `  k )
) )
32elrab 3363 . . . . 5  |-  ( k  e.  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) }  <->  ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
) )
43anbi1i 731 . . . 4  |-  ( ( k  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k )  <->  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )
5 simprl 794 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
) )  ->  k  e.  ( 1 ... J
) )
65adantrr 753 . . . . . . . . 9  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  k  e.  ( 1 ... J ) )
7 fzssuz 12382 . . . . . . . . . . . . . 14  |-  ( 1 ... J )  C_  ( ZZ>= `  1 )
8 uzssz 11707 . . . . . . . . . . . . . 14  |-  ( ZZ>= ` 
1 )  C_  ZZ
97, 8sstri 3612 . . . . . . . . . . . . 13  |-  ( 1 ... J )  C_  ZZ
10 zssre 11384 . . . . . . . . . . . . 13  |-  ZZ  C_  RR
119, 10sstri 3612 . . . . . . . . . . . 12  |-  ( 1 ... J )  C_  RR
1211sseli 3599 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... J )  ->  k  e.  RR )
1312ltp1d 10954 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... J )  ->  k  <  ( k  +  1 ) )
14 1red 10055 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... J )  ->  1  e.  RR )
1512, 14readdcld 10069 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... J )  ->  (
k  +  1 )  e.  RR )
1612, 15ltnled 10184 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... J )  ->  (
k  <  ( k  +  1 )  <->  -.  (
k  +  1 )  <_  k ) )
1713, 16mpbid 222 . . . . . . . . 9  |-  ( k  e.  ( 1 ... J )  ->  -.  ( k  +  1 )  <_  k )
186, 17syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  -.  ( k  +  1 )  <_ 
k )
19 simprr 796 . . . . . . . . 9  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  A. j  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) } j  <_  k )
20 ballotlemfcc.4 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( F `  C ) `  J
)  <  0 )
2120adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  =  J )  ->  (
( F `  C
) `  J )  <  0 )
22 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  =  J )  ->  k  =  J )
2322fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  =  J )  ->  (
( F `  C
) `  k )  =  ( ( F `
 C ) `  J ) )
2423breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  =  J )  ->  (
( ( F `  C ) `  k
)  <  0  <->  ( ( F `  C ) `  J )  <  0
) )
25 ballotlemfcc.j . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  J  e.  NN )
26 elnnuz 11724 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( J  e.  NN  <->  J  e.  ( ZZ>= `  1 )
)
2725, 26sylib 208 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  J  e.  ( ZZ>= ` 
1 ) )
28 eluzfz2 12349 . . . . . . . . . . . . . . . . . . . . 21  |-  ( J  e.  ( ZZ>= `  1
)  ->  J  e.  ( 1 ... J
) )
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  J  e.  ( 1 ... J ) )
30 eleq1 2689 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  J  ->  (
k  e.  ( 1 ... J )  <->  J  e.  ( 1 ... J
) ) )
3129, 30syl5ibrcom 237 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( k  =  J  ->  k  e.  ( 1 ... J ) ) )
3231anc2li 580 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( k  =  J  ->  ( ph  /\  k  e.  ( 1 ... J ) ) ) )
33 1eluzge0 11732 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  ( ZZ>= `  0 )
34 fzss1 12380 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... J )  C_  ( 0 ... J
) )
3534sseld 3602 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( k  e.  ( 1 ... J
)  ->  k  e.  ( 0 ... J
) ) )
3633, 35ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... J )  ->  k  e.  ( 0 ... J
) )
37 ballotth.m . . . . . . . . . . . . . . . . . . . . . 22  |-  M  e.  NN
38 ballotth.n . . . . . . . . . . . . . . . . . . . . . 22  |-  N  e.  NN
39 ballotth.o . . . . . . . . . . . . . . . . . . . . . 22  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
40 ballotth.p . . . . . . . . . . . . . . . . . . . . . 22  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
41 ballotth.f . . . . . . . . . . . . . . . . . . . . . 22  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
42 ballotlemfcc.c . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  C  e.  O )
4342adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  C  e.  O )
44 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( 0 ... J )  ->  k  e.  ZZ )
4544adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  k  e.  ZZ )
4637, 38, 39, 40, 41, 43, 45ballotlemfelz 30552 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  (
( F `  C
) `  k )  e.  ZZ )
4746zred 11482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  (
( F `  C
) `  k )  e.  RR )
48 0red 10041 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  0  e.  RR )
4947, 48ltnled 10184 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  (
( ( F `  C ) `  k
)  <  0  <->  -.  0  <_  ( ( F `  C ) `  k
) ) )
5036, 49sylan2 491 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( 1 ... J
) )  ->  (
( ( F `  C ) `  k
)  <  0  <->  -.  0  <_  ( ( F `  C ) `  k
) ) )
5132, 50syl6 35 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( k  =  J  ->  ( ( ( F `  C ) `
 k )  <  0  <->  -.  0  <_  ( ( F `  C
) `  k )
) ) )
5251imp 445 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  =  J )  ->  (
( ( F `  C ) `  k
)  <  0  <->  -.  0  <_  ( ( F `  C ) `  k
) ) )
5324, 52bitr3d 270 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  =  J )  ->  (
( ( F `  C ) `  J
)  <  0  <->  -.  0  <_  ( ( F `  C ) `  k
) ) )
5421, 53mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  =  J )  ->  -.  0  <_  ( ( F `
 C ) `  k ) )
5554ex 450 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  =  J  ->  -.  0  <_  ( ( F `  C
) `  k )
) )
5655con2d 129 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  <_  (
( F `  C
) `  k )  ->  -.  k  =  J ) )
57 nn1m1nn 11040 . . . . . . . . . . . . . . . . . . . . 21  |-  ( J  e.  NN  ->  ( J  =  1  \/  ( J  -  1
)  e.  NN ) )
5825, 57syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( J  =  1  \/  ( J  - 
1 )  e.  NN ) )
59 ballotlemfcc.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  E. i  e.  ( 1 ... J ) 0  <_  ( ( F `  C ) `  i ) )
6059adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  J  = 
1 )  ->  E. i  e.  ( 1 ... J
) 0  <_  (
( F `  C
) `  i )
)
61 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( J  =  1  ->  ( J ... J )  =  ( 1 ... J
) )
6261adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  J  = 
1 )  ->  ( J ... J )  =  ( 1 ... J
) )
6325nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  J  e.  ZZ )
64 fzsn 12383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( J  e.  ZZ  ->  ( J ... J )  =  { J } )
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( J ... J
)  =  { J } )
6665adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  J  = 
1 )  ->  ( J ... J )  =  { J } )
6762, 66eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  J  = 
1 )  ->  (
1 ... J )  =  { J } )
6867rexeqdv 3145 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  J  = 
1 )  ->  ( E. i  e.  (
1 ... J ) 0  <_  ( ( F `
 C ) `  i )  <->  E. i  e.  { J } 0  <_  ( ( F `
 C ) `  i ) ) )
6960, 68mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  J  = 
1 )  ->  E. i  e.  { J } 0  <_  ( ( F `
 C ) `  i ) )
70 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( i  =  J  ->  (
( F `  C
) `  i )  =  ( ( F `
 C ) `  J ) )
7170breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( i  =  J  ->  (
0  <_  ( ( F `  C ) `  i )  <->  0  <_  ( ( F `  C
) `  J )
) )
7271rexsng 4219 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( J  e.  NN  ->  ( E. i  e.  { J } 0  <_  (
( F `  C
) `  i )  <->  0  <_  ( ( F `
 C ) `  J ) ) )
7325, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( E. i  e. 
{ J } 0  <_  ( ( F `
 C ) `  i )  <->  0  <_  ( ( F `  C
) `  J )
) )
7473adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  J  = 
1 )  ->  ( E. i  e.  { J } 0  <_  (
( F `  C
) `  i )  <->  0  <_  ( ( F `
 C ) `  J ) ) )
7569, 74mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  J  = 
1 )  ->  0  <_  ( ( F `  C ) `  J
) )
7620adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  J  = 
1 )  ->  (
( F `  C
) `  J )  <  0 )
7737, 38, 39, 40, 41, 42, 63ballotlemfelz 30552 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( ( F `  C ) `  J
)  e.  ZZ )
7877zred 11482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( F `  C ) `  J
)  e.  RR )
79 0red 10041 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  0  e.  RR )
8078, 79ltnled 10184 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( ( F `
 C ) `  J )  <  0  <->  -.  0  <_  ( ( F `  C ) `  J ) ) )
8180adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  J  = 
1 )  ->  (
( ( F `  C ) `  J
)  <  0  <->  -.  0  <_  ( ( F `  C ) `  J
) ) )
8276, 81mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  J  = 
1 )  ->  -.  0  <_  ( ( F `
 C ) `  J ) )
8375, 82pm2.65da 600 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  -.  J  =  1 )
84 biortn 421 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  J  =  1  -> 
( ( J  - 
1 )  e.  NN  <->  ( -.  -.  J  =  1  \/  ( J  -  1 )  e.  NN ) ) )
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( J  - 
1 )  e.  NN  <->  ( -.  -.  J  =  1  \/  ( J  -  1 )  e.  NN ) ) )
86 notnotb 304 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( J  =  1  <->  -.  -.  J  =  1 )
8786orbi1i 542 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  =  1  \/  ( J  -  1 )  e.  NN )  <-> 
( -.  -.  J  =  1  \/  ( J  -  1 )  e.  NN ) )
8885, 87syl6bbr 278 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( J  - 
1 )  e.  NN  <->  ( J  =  1  \/  ( J  -  1 )  e.  NN ) ) )
8958, 88mpbird 247 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( J  -  1 )  e.  NN )
90 elnnuz 11724 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  -  1 )  e.  NN  <->  ( J  -  1 )  e.  ( ZZ>= `  1 )
)
9189, 90sylib 208 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( J  -  1 )  e.  ( ZZ>= ` 
1 ) )
92 elfzp1 12391 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  -  1 )  e.  ( ZZ>= `  1
)  ->  ( k  e.  ( 1 ... (
( J  -  1 )  +  1 ) )  <->  ( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  ( ( J  - 
1 )  +  1 ) ) ) )
9391, 92syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( k  e.  ( 1 ... ( ( J  -  1 )  +  1 ) )  <-> 
( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  ( ( J  -  1 )  +  1 ) ) ) )
9425nncnd 11036 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  J  e.  CC )
95 1cnd 10056 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  1  e.  CC )
9694, 95npcand 10396 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( J  - 
1 )  +  1 )  =  J )
9796oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1 ... (
( J  -  1 )  +  1 ) )  =  ( 1 ... J ) )
9897eleq2d 2687 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( k  e.  ( 1 ... ( ( J  -  1 )  +  1 ) )  <-> 
k  e.  ( 1 ... J ) ) )
9996eqeq2d 2632 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( k  =  ( ( J  -  1 )  +  1 )  <-> 
k  =  J ) )
10099orbi2d 738 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  ( ( J  - 
1 )  +  1 ) )  <->  ( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  J ) ) )
10193, 98, 1003bitr3d 298 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( k  e.  ( 1 ... J )  <-> 
( k  e.  ( 1 ... ( J  -  1 ) )  \/  k  =  J ) ) )
102 orcom 402 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ( 1 ... ( J  - 
1 ) )  \/  k  =  J )  <-> 
( k  =  J  \/  k  e.  ( 1 ... ( J  -  1 ) ) ) )
103101, 102syl6bb 276 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( k  e.  ( 1 ... J )  <-> 
( k  =  J  \/  k  e.  ( 1 ... ( J  -  1 ) ) ) ) )
104103biimpd 219 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  ( 1 ... J )  ->  ( k  =  J  \/  k  e.  ( 1 ... ( J  -  1 ) ) ) ) )
105 pm5.6 951 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  ( 1 ... J )  /\  -.  k  =  J )  ->  k  e.  ( 1 ... ( J  -  1 ) ) )  <->  ( k  e.  ( 1 ... J
)  ->  ( k  =  J  \/  k  e.  ( 1 ... ( J  -  1 ) ) ) ) )
106104, 105sylibr 224 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( k  e.  ( 1 ... J
)  /\  -.  k  =  J )  ->  k  e.  ( 1 ... ( J  -  1 ) ) ) )
10789nnzd 11481 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( J  -  1 )  e.  ZZ )
108 1z 11407 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  ZZ
109107, 108jctil 560 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1  e.  ZZ  /\  ( J  -  1 )  e.  ZZ ) )
110 elfzelz 12342 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... ( J  -  1 ) )  ->  k  e.  ZZ )
111110, 108jctir 561 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 1 ... ( J  -  1 ) )  ->  (
k  e.  ZZ  /\  1  e.  ZZ )
)
112 fzaddel 12375 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1  e.  ZZ  /\  ( J  -  1 )  e.  ZZ )  /\  ( k  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( k  e.  ( 1 ... ( J  -  1 ) )  <-> 
( k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  -  1 )  +  1 ) ) ) )
113109, 111, 112syl2an 494 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
k  e.  ( 1 ... ( J  - 
1 ) )  <->  ( k  +  1 )  e.  ( ( 1  +  1 ) ... (
( J  -  1 )  +  1 ) ) ) )
114113biimp3a 1432 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) )  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  - 
1 )  +  1 ) ) )
1151143anidm23 1385 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  - 
1 )  +  1 ) ) )
116 1p1e2 11134 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  +  1 )  =  2
117116a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 1  +  1 )  =  2 )
118117, 96oveq12d 6668 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1  +  1 ) ... (
( J  -  1 )  +  1 ) )  =  ( 2 ... J ) )
119118eleq2d 2687 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  -  1 )  +  1 ) )  <-> 
( k  +  1 )  e.  ( 2 ... J ) ) )
120 2eluzge1 11734 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  ( ZZ>= `  1 )
121 fzss1 12380 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( 2 ... J )  C_  ( 1 ... J
) )
122120, 121ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( 2 ... J )  C_  ( 1 ... J
)
123122sseli 3599 . . . . . . . . . . . . . . . . 17  |-  ( ( k  +  1 )  e.  ( 2 ... J )  ->  (
k  +  1 )  e.  ( 1 ... J ) )
124119, 123syl6bi 243 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  -  1 )  +  1 ) )  ->  ( k  +  1 )  e.  ( 1 ... J ) ) )
125124adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
( k  +  1 )  e.  ( ( 1  +  1 ) ... ( ( J  -  1 )  +  1 ) )  -> 
( k  +  1 )  e.  ( 1 ... J ) ) )
126115, 125mpd 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... ( J  -  1 ) ) )  ->  (
k  +  1 )  e.  ( 1 ... J ) )
127126ex 450 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  ( 1 ... ( J  -  1 ) )  ->  ( k  +  1 )  e.  ( 1 ... J ) ) )
128106, 127syld 47 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( k  e.  ( 1 ... J
)  /\  -.  k  =  J )  ->  (
k  +  1 )  e.  ( 1 ... J ) ) )
12956, 128sylan2d 499 . . . . . . . . . . 11  |-  ( ph  ->  ( ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
)  ->  ( k  +  1 )  e.  ( 1 ... J
) ) )
130129imp 445 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
) )  ->  (
k  +  1 )  e.  ( 1 ... J ) )
131130adantrr 753 . . . . . . . . 9  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( k  +  1 )  e.  ( 1 ... J ) )
132 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( i  =  ( k  +  1 )  ->  (
( F `  C
) `  i )  =  ( ( F `
 C ) `  ( k  +  1 ) ) )
133132breq2d 4665 . . . . . . . . . . . . 13  |-  ( i  =  ( k  +  1 )  ->  (
0  <_  ( ( F `  C ) `  i )  <->  0  <_  ( ( F `  C
) `  ( k  +  1 ) ) ) )
134133elrab 3363 . . . . . . . . . . . 12  |-  ( ( k  +  1 )  e.  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) }  <->  ( (
k  +  1 )  e.  ( 1 ... J )  /\  0  <_  ( ( F `  C ) `  (
k  +  1 ) ) ) )
135 breq1 4656 . . . . . . . . . . . . 13  |-  ( j  =  ( k  +  1 )  ->  (
j  <_  k  <->  ( k  +  1 )  <_ 
k ) )
136135rspccva 3308 . . . . . . . . . . . 12  |-  ( ( A. j  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) } j  <_  k  /\  (
k  +  1 )  e.  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) } )  -> 
( k  +  1 )  <_  k )
137134, 136sylan2br 493 . . . . . . . . . . 11  |-  ( ( A. j  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) } j  <_  k  /\  (
( k  +  1 )  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  ( k  +  1 ) ) ) )  ->  ( k  +  1 )  <_  k
)
138137expr 643 . . . . . . . . . 10  |-  ( ( A. j  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) } j  <_  k  /\  (
k  +  1 )  e.  ( 1 ... J ) )  -> 
( 0  <_  (
( F `  C
) `  ( k  +  1 ) )  ->  ( k  +  1 )  <_  k
) )
139138con3d 148 . . . . . . . . 9  |-  ( ( A. j  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) } j  <_  k  /\  (
k  +  1 )  e.  ( 1 ... J ) )  -> 
( -.  ( k  +  1 )  <_ 
k  ->  -.  0  <_  ( ( F `  C ) `  (
k  +  1 ) ) ) )
14019, 131, 139syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( -.  (
k  +  1 )  <_  k  ->  -.  0  <_  ( ( F `
 C ) `  ( k  +  1 ) ) ) )
14118, 140mpd 15 . . . . . . 7  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  -.  0  <_  ( ( F `  C
) `  ( k  +  1 ) ) )
142 simplrr 801 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  0  <_  (
( F `  C
) `  k )
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) } j  <_  k
) )  /\  (
k  +  1 )  e.  C )  ->  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k )
143131adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  0  <_  (
( F `  C
) `  k )
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) } j  <_  k
) )  /\  (
k  +  1 )  e.  C )  -> 
( k  +  1 )  e.  ( 1 ... J ) )
144 0red 10041 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  0  e.  RR )
145 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ph )
146130adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( k  +  1 )  e.  ( 1 ... J
) )
14734sseld 3602 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( (
k  +  1 )  e.  ( 1 ... J )  ->  (
k  +  1 )  e.  ( 0 ... J ) ) )
14833, 146, 147mpsyl 68 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( k  +  1 )  e.  ( 0 ... J
) )
14942adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 0 ... J
) )  ->  C  e.  O )
150 elfzelz 12342 . . . . . . . . . . . . . . . . 17  |-  ( ( k  +  1 )  e.  ( 0 ... J )  ->  (
k  +  1 )  e.  ZZ )
151150adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 0 ... J
) )  ->  (
k  +  1 )  e.  ZZ )
15237, 38, 39, 40, 41, 149, 151ballotlemfelz 30552 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 0 ... J
) )  ->  (
( F `  C
) `  ( k  +  1 ) )  e.  ZZ )
153152zred 11482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 0 ... J
) )  ->  (
( F `  C
) `  ( k  +  1 ) )  e.  RR )
154145, 148, 153syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( ( F `  C ) `  ( k  +  1 ) )  e.  RR )
155 simplrr 801 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  0  <_  ( ( F `  C
) `  k )
)
1565adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  k  e.  ( 1 ... J
) )
157156, 36syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  k  e.  ( 0 ... J
) )
158129imdistani 726 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
) )  ->  ( ph  /\  ( k  +  1 )  e.  ( 1 ... J ) ) )
15942adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  C  e.  O )
160 elfznn 12370 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  +  1 )  e.  ( 1 ... J )  ->  (
k  +  1 )  e.  NN )
161160adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  (
k  +  1 )  e.  NN )
16237, 38, 39, 40, 41, 159, 161ballotlemfp1 30553 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  (
( -.  ( k  +  1 )  e.  C  ->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  -  1 ) )  /\  ( ( k  +  1 )  e.  C  ->  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 ( ( k  +  1 )  - 
1 ) )  +  1 ) ) ) )
163162simprd 479 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  (
( k  +  1 )  e.  C  -> 
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  +  1 ) ) )
164163imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  +  1 )  e.  ( 1 ... J ) )  /\  ( k  +  1 )  e.  C )  ->  ( ( F `
 C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  +  1 ) )
165158, 164sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  +  1 ) )
166 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ( 1 ... J )  ->  k  e.  ZZ )
167166zcnd 11483 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( 1 ... J )  ->  k  e.  CC )
168 1cnd 10056 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( 1 ... J )  ->  1  e.  CC )
169167, 168pncand 10393 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( 1 ... J )  ->  (
( k  +  1 )  -  1 )  =  k )
170169fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... J )  ->  (
( F `  C
) `  ( (
k  +  1 )  -  1 ) )  =  ( ( F `
 C ) `  k ) )
171170oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 1 ... J )  ->  (
( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  +  1 )  =  ( ( ( F `  C ) `
 k )  +  1 ) )
172171eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 1 ... J )  ->  (
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  +  1 )  <->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  +  1 ) ) )
173156, 172syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 ( ( k  +  1 )  - 
1 ) )  +  1 )  <->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  +  1 ) ) )
174165, 173mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  +  1 ) )
175 0z 11388 . . . . . . . . . . . . . . . . . 18  |-  0  e.  ZZ
176 zleltp1 11428 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  ZZ  /\  ( ( F `  C ) `  k
)  e.  ZZ )  ->  ( 0  <_ 
( ( F `  C ) `  k
)  <->  0  <  (
( ( F `  C ) `  k
)  +  1 ) ) )
177175, 46, 176sylancr 695 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 0 ... J
) )  ->  (
0  <_  ( ( F `  C ) `  k )  <->  0  <  ( ( ( F `  C ) `  k
)  +  1 ) ) )
178177adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... J
) )  /\  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  +  1 ) )  -> 
( 0  <_  (
( F `  C
) `  k )  <->  0  <  ( ( ( F `  C ) `
 k )  +  1 ) ) )
179 breq2 4657 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  +  1 )  ->  (
0  <  ( ( F `  C ) `  ( k  +  1 ) )  <->  0  <  ( ( ( F `  C ) `  k
)  +  1 ) ) )
180179adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... J
) )  /\  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  +  1 ) )  -> 
( 0  <  (
( F `  C
) `  ( k  +  1 ) )  <->  0  <  ( ( ( F `  C
) `  k )  +  1 ) ) )
181178, 180bitr4d 271 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... J
) )  /\  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  +  1 ) )  -> 
( 0  <_  (
( F `  C
) `  k )  <->  0  <  ( ( F `
 C ) `  ( k  +  1 ) ) ) )
182145, 157, 174, 181syl21anc 1325 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  ( 0  <_  ( ( F `
 C ) `  k )  <->  0  <  ( ( F `  C
) `  ( k  +  1 ) ) ) )
183155, 182mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  0  <  ( ( F `  C
) `  ( k  +  1 ) ) )
184144, 154, 183ltled 10185 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  ( k  +  1 )  e.  C
)  ->  0  <_  ( ( F `  C
) `  ( k  +  1 ) ) )
185184adantlrr 757 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  0  <_  (
( F `  C
) `  k )
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) } j  <_  k
) )  /\  (
k  +  1 )  e.  C )  -> 
0  <_  ( ( F `  C ) `  ( k  +  1 ) ) )
186142, 143, 185, 137syl12anc 1324 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  0  <_  (
( F `  C
) `  k )
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) } j  <_  k
) )  /\  (
k  +  1 )  e.  C )  -> 
( k  +  1 )  <_  k )
18718, 186mtand 691 . . . . . . . . 9  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  -.  ( k  +  1 )  e.  C )
188162simpld 475 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  +  1 )  e.  ( 1 ... J
) )  ->  ( -.  ( k  +  1 )  e.  C  -> 
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  -  1 ) ) )
189188imp 445 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  +  1 )  e.  ( 1 ... J ) )  /\  -.  ( k  +  1 )  e.  C )  ->  ( ( F `
 C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  -  1 ) )
190158, 189sylan 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  -.  ( k  +  1 )  e.  C )  ->  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 ( ( k  +  1 )  - 
1 ) )  - 
1 ) )
1915adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  -.  ( k  +  1 )  e.  C )  ->  k  e.  ( 1 ... J
) )
192170oveq1d 6665 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... J )  ->  (
( ( F `  C ) `  (
( k  +  1 )  -  1 ) )  -  1 )  =  ( ( ( F `  C ) `
 k )  - 
1 ) )
193192eqeq2d 2632 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... J )  ->  (
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  -  1 )  <->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  -  1 ) ) )
194191, 193syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  -.  ( k  +  1 )  e.  C )  ->  (
( ( F `  C ) `  (
k  +  1 ) )  =  ( ( ( F `  C
) `  ( (
k  +  1 )  -  1 ) )  -  1 )  <->  ( ( F `  C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  -  1 ) ) )
195190, 194mpbid 222 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) ) )  /\  -.  ( k  +  1 )  e.  C )  ->  (
( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  - 
1 ) )
196195adantlrr 757 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( k  e.  ( 1 ... J )  /\  0  <_  (
( F `  C
) `  k )
)  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) } j  <_  k
) )  /\  -.  ( k  +  1 )  e.  C )  ->  ( ( F `
 C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  -  1 ) )
197187, 196mpdan 702 . . . . . . . 8  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( F `
 C ) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `  k
)  -  1 ) )
198 breq2 4657 . . . . . . . . 9  |-  ( ( ( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  - 
1 )  ->  (
0  <_  ( ( F `  C ) `  ( k  +  1 ) )  <->  0  <_  ( ( ( F `  C ) `  k
)  -  1 ) ) )
199198notbid 308 . . . . . . . 8  |-  ( ( ( F `  C
) `  ( k  +  1 ) )  =  ( ( ( F `  C ) `
 k )  - 
1 )  ->  ( -.  0  <_  ( ( F `  C ) `
 ( k  +  1 ) )  <->  -.  0  <_  ( ( ( F `
 C ) `  k )  -  1 ) ) )
200197, 199syl 17 . . . . . . 7  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( -.  0  <_  ( ( F `  C ) `  (
k  +  1 ) )  <->  -.  0  <_  ( ( ( F `  C ) `  k
)  -  1 ) ) )
201141, 200mpbid 222 . . . . . 6  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  -.  0  <_  ( ( ( F `  C ) `  k
)  -  1 ) )
2025, 36syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
) )  ->  k  e.  ( 0 ... J
) )
203202, 46syldan 487 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( 1 ... J
)  /\  0  <_  ( ( F `  C
) `  k )
) )  ->  (
( F `  C
) `  k )  e.  ZZ )
204203adantrr 753 . . . . . . 7  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( F `
 C ) `  k )  e.  ZZ )
205 zlem1lt 11429 . . . . . . . . 9  |-  ( ( ( ( F `  C ) `  k
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( ( F `
 C ) `  k )  <_  0  <->  ( ( ( F `  C ) `  k
)  -  1 )  <  0 ) )
206175, 205mpan2 707 . . . . . . . 8  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( (
( F `  C
) `  k )  <_  0  <->  ( ( ( F `  C ) `
 k )  - 
1 )  <  0
) )
207 zre 11381 . . . . . . . . . 10  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( ( F `  C ) `  k )  e.  RR )
208 1red 10055 . . . . . . . . . 10  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  1  e.  RR )
209207, 208resubcld 10458 . . . . . . . . 9  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( (
( F `  C
) `  k )  -  1 )  e.  RR )
210 0red 10041 . . . . . . . . 9  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  0  e.  RR )
211209, 210ltnled 10184 . . . . . . . 8  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( (
( ( F `  C ) `  k
)  -  1 )  <  0  <->  -.  0  <_  ( ( ( F `
 C ) `  k )  -  1 ) ) )
212206, 211bitrd 268 . . . . . . 7  |-  ( ( ( F `  C
) `  k )  e.  ZZ  ->  ( (
( F `  C
) `  k )  <_  0  <->  -.  0  <_  ( ( ( F `  C ) `  k
)  -  1 ) ) )
213204, 212syl 17 . . . . . 6  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( ( F `  C ) `
 k )  <_ 
0  <->  -.  0  <_  ( ( ( F `  C ) `  k
)  -  1 ) ) )
214201, 213mpbird 247 . . . . 5  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( F `
 C ) `  k )  <_  0
)
215 simprlr 803 . . . . 5  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  0  <_  (
( F `  C
) `  k )
)
216204zred 11482 . . . . . 6  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( F `
 C ) `  k )  e.  RR )
217 0red 10041 . . . . . 6  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  0  e.  RR )
218216, 217letri3d 10179 . . . . 5  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( ( F `  C ) `
 k )  =  0  <->  ( ( ( F `  C ) `
 k )  <_ 
0  /\  0  <_  ( ( F `  C
) `  k )
) ) )
219214, 215, 218mpbir2and 957 . . . 4  |-  ( (
ph  /\  ( (
k  e.  ( 1 ... J )  /\  0  <_  ( ( F `
 C ) `  k ) )  /\  A. j  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } j  <_  k ) )  ->  ( ( F `
 C ) `  k )  =  0 )
2204, 219sylan2b 492 . . 3  |-  ( (
ph  /\  ( k  e.  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) }  /\  A. j  e. 
{ i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) } j  <_  k
) )  ->  (
( F `  C
) `  k )  =  0 )
221 ssrab2 3687 . . . . . 6  |-  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  C_  ( 1 ... J
)
222221, 11sstri 3612 . . . . 5  |-  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  C_  RR
223222a1i 11 . . . 4  |-  ( ph  ->  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) }  C_  RR )
224 fzfi 12771 . . . . . 6  |-  ( 1 ... J )  e. 
Fin
225 ssfi 8180 . . . . . 6  |-  ( ( ( 1 ... J
)  e.  Fin  /\  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) }  C_  ( 1 ... J
) )  ->  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  e.  Fin )
226224, 221, 225mp2an 708 . . . . 5  |-  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  e.  Fin
227226a1i 11 . . . 4  |-  ( ph  ->  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) }  e.  Fin )
228 rabn0 3958 . . . . 5  |-  ( { i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) }  =/=  (/)  <->  E. i  e.  ( 1 ... J ) 0  <_  ( ( F `
 C ) `  i ) )
22959, 228sylibr 224 . . . 4  |-  ( ph  ->  { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) }  =/=  (/) )
230 fimaxre 10968 . . . 4  |-  ( ( { i  e.  ( 1 ... J )  |  0  <_  (
( F `  C
) `  i ) }  C_  RR  /\  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) }  e.  Fin  /\  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) }  =/=  (/) )  ->  E. k  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) } A. j  e.  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) } j  <_ 
k )
231223, 227, 229, 230syl3anc 1326 . . 3  |-  ( ph  ->  E. k  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) } A. j  e.  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) } j  <_ 
k )
232220, 231reximddv 3018 . 2  |-  ( ph  ->  E. k  e.  {
i  e.  ( 1 ... J )  |  0  <_  ( ( F `  C ) `  i ) }  (
( F `  C
) `  k )  =  0 )
233 elrabi 3359 . . . 4  |-  ( k  e.  { i  e.  ( 1 ... J
)  |  0  <_ 
( ( F `  C ) `  i
) }  ->  k  e.  ( 1 ... J
) )
234233anim1i 592 . . 3  |-  ( ( k  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  /\  ( ( F `  C ) `  k
)  =  0 )  ->  ( k  e.  ( 1 ... J
)  /\  ( ( F `  C ) `  k )  =  0 ) )
235234reximi2 3010 . 2  |-  ( E. k  e.  { i  e.  ( 1 ... J )  |  0  <_  ( ( F `
 C ) `  i ) }  (
( F `  C
) `  k )  =  0  ->  E. k  e.  ( 1 ... J
) ( ( F `
 C ) `  k )  =  0 )
236232, 235syl 17 1  |-  ( ph  ->  E. k  e.  ( 1 ... J ) ( ( F `  C ) `  k
)  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  ballotlem1c  30569
  Copyright terms: Public domain W3C validator