Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nuliotaALT Structured version   Visualization version   Unicode version

Theorem bj-nuliotaALT 33020
Description: Alternate proof of bj-nuliota 33019. Note that this alternate proof uses the fact that  iota x ph evaluates to  (/) when there is no  x satisfying  ph (iotanul 5866). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-nuliotaALT  |-  (/)  =  ( iota x A. y  -.  y  e.  x
)
Distinct variable group:    x, y

Proof of Theorem bj-nuliotaALT
StepHypRef Expression
1 0ss 3972 . 2  |-  (/)  C_  ( iota x A. y  -.  y  e.  x )
2 iotassuni 5867 . . 3  |-  ( iota
x A. y  -.  y  e.  x ) 
C_  U. { x  | 
A. y  -.  y  e.  x }
3 eq0 3929 . . . . . . 7  |-  ( x  =  (/)  <->  A. y  -.  y  e.  x )
43bicomi 214 . . . . . 6  |-  ( A. y  -.  y  e.  x  <->  x  =  (/) )
54abbii 2739 . . . . 5  |-  { x  |  A. y  -.  y  e.  x }  =  {
x  |  x  =  (/) }
65unieqi 4445 . . . 4  |-  U. {
x  |  A. y  -.  y  e.  x }  =  U. { x  |  x  =  (/) }
7 df-sn 4178 . . . . . 6  |-  { (/) }  =  { x  |  x  =  (/) }
87eqcomi 2631 . . . . 5  |-  { x  |  x  =  (/) }  =  { (/) }
98unieqi 4445 . . . 4  |-  U. {
x  |  x  =  (/) }  =  U. { (/)
}
10 0ex 4790 . . . . 5  |-  (/)  e.  _V
1110unisn 4451 . . . 4  |-  U. { (/)
}  =  (/)
126, 9, 113eqtri 2648 . . 3  |-  U. {
x  |  A. y  -.  y  e.  x }  =  (/)
132, 12sseqtri 3637 . 2  |-  ( iota
x A. y  -.  y  e.  x ) 
C_  (/)
141, 13eqssi 3619 1  |-  (/)  =  ( iota x A. y  -.  y  e.  x
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3   A.wal 1481    = wceq 1483   {cab 2608   (/)c0 3915   {csn 4177   U.cuni 4436   iotacio 5849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator