Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglex Structured version   Visualization version   Unicode version

Theorem bj-snglex 32961
Description: A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglex  |-  ( A  e.  _V  <-> sngl  A  e.  _V )

Proof of Theorem bj-snglex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isset 3207 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
2 pweq 4161 . . . . 5  |-  ( x  =  A  ->  ~P x  =  ~P A
)
32eximi 1762 . . . 4  |-  ( E. x  x  =  A  ->  E. x ~P x  =  ~P A )
4 bj-snglss 32958 . . . . . 6  |- sngl  A  C_  ~P A
5 sseq2 3627 . . . . . 6  |-  ( ~P x  =  ~P A  ->  (sngl  A  C_  ~P x 
<-> sngl 
A  C_  ~P A
) )
64, 5mpbiri 248 . . . . 5  |-  ( ~P x  =  ~P A  -> sngl  A  C_  ~P x
)
76eximi 1762 . . . 4  |-  ( E. x ~P x  =  ~P A  ->  E. xsngl  A 
C_  ~P x )
8 vpwex 4849 . . . . . 6  |-  ~P x  e.  _V
98ssex 4802 . . . . 5  |-  (sngl  A  C_ 
~P x  -> sngl  A  e. 
_V )
109exlimiv 1858 . . . 4  |-  ( E. xsngl  A  C_  ~P x  -> sngl  A  e.  _V )
113, 7, 103syl 18 . . 3  |-  ( E. x  x  =  A  -> sngl  A  e.  _V )
121, 11sylbi 207 . 2  |-  ( A  e.  _V  -> sngl  A  e. 
_V )
13 bj-snglinv 32960 . . 3  |-  A  =  { y  |  {
y }  e. sngl  A }
14 bj-snsetex 32951 . . 3  |-  (sngl  A  e.  _V  ->  { y  |  { y }  e. sngl  A }  e.  _V )
1513, 14syl5eqel 2705 . 2  |-  (sngl  A  e.  _V  ->  A  e.  _V )
1612, 15impbii 199 1  |-  ( A  e.  _V  <-> sngl  A  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {csn 4177  sngl bj-csngl 32953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-bj-sngl 32954
This theorem is referenced by:  bj-tagex  32975
  Copyright terms: Public domain W3C validator