Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1280 Structured version   Visualization version   Unicode version

Theorem bnj1280 31088
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1280.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1280.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1280.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1280.4  |-  D  =  ( dom  g  i^i 
dom  h )
bnj1280.5  |-  E  =  { x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }
bnj1280.6  |-  ( ph  <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )
bnj1280.7  |-  ( ps  <->  (
ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )
bnj1280.17  |-  ( ps 
->  (  pred ( x ,  A ,  R
)  i^i  E )  =  (/) )
Assertion
Ref Expression
bnj1280  |-  ( ps 
->  ( g  |`  pred (
x ,  A ,  R ) )  =  ( h  |`  pred (
x ,  A ,  R ) ) )
Distinct variable groups:    A, d,
f    B, f, g    B, h, f    D, d, x   
f, G, g    h, G    R, d, f    g, Y    h, Y    g, d    x, f, g    h, d, x
Allowed substitution hints:    ph( x, y, f, g, h, d)    ps( x, y, f, g, h, d)    A( x, y, g, h)    B( x, y, d)    C( x, y, f, g, h, d)    D( y, f, g, h)    R( x, y, g, h)    E( x, y, f, g, h, d)    G( x, y, d)    Y( x, y, f, d)

Proof of Theorem bnj1280
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bnj1280.1 . . . . . . . 8  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
2 bnj1280.2 . . . . . . . 8  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
3 bnj1280.3 . . . . . . . 8  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
4 bnj1280.4 . . . . . . . 8  |-  D  =  ( dom  g  i^i 
dom  h )
5 bnj1280.5 . . . . . . . 8  |-  E  =  { x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }
6 bnj1280.6 . . . . . . . 8  |-  ( ph  <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )
7 bnj1280.7 . . . . . . . 8  |-  ( ps  <->  (
ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )
81, 2, 3, 4, 5, 6, 7bnj1286 31087 . . . . . . 7  |-  ( ps 
->  pred ( x ,  A ,  R ) 
C_  D )
98sseld 3602 . . . . . 6  |-  ( ps 
->  ( z  e.  pred ( x ,  A ,  R )  ->  z  e.  D ) )
10 bnj1280.17 . . . . . . . . 9  |-  ( ps 
->  (  pred ( x ,  A ,  R
)  i^i  E )  =  (/) )
11 disj1 4019 . . . . . . . . 9  |-  ( ( 
pred ( x ,  A ,  R )  i^i  E )  =  (/) 
<-> 
A. z ( z  e.  pred ( x ,  A ,  R )  ->  -.  z  e.  E ) )
1210, 11sylib 208 . . . . . . . 8  |-  ( ps 
->  A. z ( z  e.  pred ( x ,  A ,  R )  ->  -.  z  e.  E ) )
131219.21bi 2059 . . . . . . 7  |-  ( ps 
->  ( z  e.  pred ( x ,  A ,  R )  ->  -.  z  e.  E )
)
14 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
g `  x )  =  ( g `  z ) )
15 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
h `  x )  =  ( h `  z ) )
1614, 15neeq12d 2855 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( g `  x
)  =/=  ( h `
 x )  <->  ( g `  z )  =/=  (
h `  z )
) )
1716, 5elrab2 3366 . . . . . . . . 9  |-  ( z  e.  E  <->  ( z  e.  D  /\  (
g `  z )  =/=  ( h `  z
) ) )
1817notbii 310 . . . . . . . 8  |-  ( -.  z  e.  E  <->  -.  (
z  e.  D  /\  ( g `  z
)  =/=  ( h `
 z ) ) )
19 imnan 438 . . . . . . . 8  |-  ( ( z  e.  D  ->  -.  ( g `  z
)  =/=  ( h `
 z ) )  <->  -.  ( z  e.  D  /\  ( g `  z
)  =/=  ( h `
 z ) ) )
20 nne 2798 . . . . . . . . 9  |-  ( -.  ( g `  z
)  =/=  ( h `
 z )  <->  ( g `  z )  =  ( h `  z ) )
2120imbi2i 326 . . . . . . . 8  |-  ( ( z  e.  D  ->  -.  ( g `  z
)  =/=  ( h `
 z ) )  <-> 
( z  e.  D  ->  ( g `  z
)  =  ( h `
 z ) ) )
2218, 19, 213bitr2i 288 . . . . . . 7  |-  ( -.  z  e.  E  <->  ( z  e.  D  ->  ( g `
 z )  =  ( h `  z
) ) )
2313, 22syl6ib 241 . . . . . 6  |-  ( ps 
->  ( z  e.  pred ( x ,  A ,  R )  ->  (
z  e.  D  -> 
( g `  z
)  =  ( h `
 z ) ) ) )
249, 23mpdd 43 . . . . 5  |-  ( ps 
->  ( z  e.  pred ( x ,  A ,  R )  ->  (
g `  z )  =  ( h `  z ) ) )
2524imp 445 . . . 4  |-  ( ( ps  /\  z  e. 
pred ( x ,  A ,  R ) )  ->  ( g `  z )  =  ( h `  z ) )
26 fvres 6207 . . . . . 6  |-  ( z  e.  D  ->  (
( g  |`  D ) `
 z )  =  ( g `  z
) )
279, 26syl6 35 . . . . 5  |-  ( ps 
->  ( z  e.  pred ( x ,  A ,  R )  ->  (
( g  |`  D ) `
 z )  =  ( g `  z
) ) )
2827imp 445 . . . 4  |-  ( ( ps  /\  z  e. 
pred ( x ,  A ,  R ) )  ->  ( (
g  |`  D ) `  z )  =  ( g `  z ) )
29 fvres 6207 . . . . . 6  |-  ( z  e.  D  ->  (
( h  |`  D ) `
 z )  =  ( h `  z
) )
309, 29syl6 35 . . . . 5  |-  ( ps 
->  ( z  e.  pred ( x ,  A ,  R )  ->  (
( h  |`  D ) `
 z )  =  ( h `  z
) ) )
3130imp 445 . . . 4  |-  ( ( ps  /\  z  e. 
pred ( x ,  A ,  R ) )  ->  ( (
h  |`  D ) `  z )  =  ( h `  z ) )
3225, 28, 313eqtr4d 2666 . . 3  |-  ( ( ps  /\  z  e. 
pred ( x ,  A ,  R ) )  ->  ( (
g  |`  D ) `  z )  =  ( ( h  |`  D ) `
 z ) )
3332ralrimiva 2966 . 2  |-  ( ps 
->  A. z  e.  pred  ( x ,  A ,  R ) ( ( g  |`  D ) `  z )  =  ( ( h  |`  D ) `
 z ) )
348resabs1d 5428 . . . 4  |-  ( ps 
->  ( ( g  |`  D )  |`  pred (
x ,  A ,  R ) )  =  ( g  |`  pred (
x ,  A ,  R ) ) )
358resabs1d 5428 . . . 4  |-  ( ps 
->  ( ( h  |`  D )  |`  pred (
x ,  A ,  R ) )  =  ( h  |`  pred (
x ,  A ,  R ) ) )
3634, 35eqeq12d 2637 . . 3  |-  ( ps 
->  ( ( ( g  |`  D )  |`  pred (
x ,  A ,  R ) )  =  ( ( h  |`  D )  |`  pred (
x ,  A ,  R ) )  <->  ( g  |` 
pred ( x ,  A ,  R ) )  =  ( h  |`  pred ( x ,  A ,  R ) ) ) )
371, 2, 3, 4, 5, 6, 7bnj1256 31083 . . . . . . 7  |-  ( ph  ->  E. d  e.  B  g  Fn  d )
384bnj1292 30886 . . . . . . . . 9  |-  D  C_  dom  g
39 fndm 5990 . . . . . . . . 9  |-  ( g  Fn  d  ->  dom  g  =  d )
4038, 39syl5sseq 3653 . . . . . . . 8  |-  ( g  Fn  d  ->  D  C_  d )
41 fnssres 6004 . . . . . . . 8  |-  ( ( g  Fn  d  /\  D  C_  d )  -> 
( g  |`  D )  Fn  D )
4240, 41mpdan 702 . . . . . . 7  |-  ( g  Fn  d  ->  (
g  |`  D )  Fn  D )
4337, 42bnj31 30785 . . . . . 6  |-  ( ph  ->  E. d  e.  B  ( g  |`  D )  Fn  D )
4443bnj1265 30883 . . . . 5  |-  ( ph  ->  ( g  |`  D )  Fn  D )
457, 44bnj835 30829 . . . 4  |-  ( ps 
->  ( g  |`  D )  Fn  D )
461, 2, 3, 4, 5, 6, 7bnj1259 31084 . . . . . . 7  |-  ( ph  ->  E. d  e.  B  h  Fn  d )
474bnj1293 30887 . . . . . . . . 9  |-  D  C_  dom  h
48 fndm 5990 . . . . . . . . 9  |-  ( h  Fn  d  ->  dom  h  =  d )
4947, 48syl5sseq 3653 . . . . . . . 8  |-  ( h  Fn  d  ->  D  C_  d )
50 fnssres 6004 . . . . . . . 8  |-  ( ( h  Fn  d  /\  D  C_  d )  -> 
( h  |`  D )  Fn  D )
5149, 50mpdan 702 . . . . . . 7  |-  ( h  Fn  d  ->  (
h  |`  D )  Fn  D )
5246, 51bnj31 30785 . . . . . 6  |-  ( ph  ->  E. d  e.  B  ( h  |`  D )  Fn  D )
5352bnj1265 30883 . . . . 5  |-  ( ph  ->  ( h  |`  D )  Fn  D )
547, 53bnj835 30829 . . . 4  |-  ( ps 
->  ( h  |`  D )  Fn  D )
55 fvreseq 6319 . . . 4  |-  ( ( ( ( g  |`  D )  Fn  D  /\  ( h  |`  D )  Fn  D )  /\  pred ( x ,  A ,  R )  C_  D
)  ->  ( (
( g  |`  D )  |`  pred ( x ,  A ,  R ) )  =  ( ( h  |`  D )  |` 
pred ( x ,  A ,  R ) )  <->  A. z  e.  pred  ( x ,  A ,  R ) ( ( g  |`  D ) `  z )  =  ( ( h  |`  D ) `
 z ) ) )
5645, 54, 8, 55syl21anc 1325 . . 3  |-  ( ps 
->  ( ( ( g  |`  D )  |`  pred (
x ,  A ,  R ) )  =  ( ( h  |`  D )  |`  pred (
x ,  A ,  R ) )  <->  A. z  e.  pred  ( x ,  A ,  R ) ( ( g  |`  D ) `  z
)  =  ( ( h  |`  D ) `  z ) ) )
5736, 56bitr3d 270 . 2  |-  ( ps 
->  ( ( g  |`  pred ( x ,  A ,  R ) )  =  ( h  |`  pred (
x ,  A ,  R ) )  <->  A. z  e.  pred  ( x ,  A ,  R ) ( ( g  |`  D ) `  z
)  =  ( ( h  |`  D ) `  z ) ) )
5833, 57mpbird 247 1  |-  ( ps 
->  ( g  |`  pred (
x ,  A ,  R ) )  =  ( h  |`  pred (
x ,  A ,  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   (/)c0 3915   <.cop 4183   class class class wbr 4653   dom cdm 5114    |` cres 5116    Fn wfn 5883   ` cfv 5888    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-bnj17 30753
This theorem is referenced by:  bnj1311  31092
  Copyright terms: Public domain W3C validator