Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1374 Structured version   Visualization version   Unicode version

Theorem bnj1374 31099
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1374.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1374.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1374.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1374.4  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
bnj1374.5  |-  D  =  { x  e.  A  |  -.  E. f ta }
bnj1374.6  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
bnj1374.7  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
bnj1374.8  |-  ( ta'  <->  [. y  /  x ]. ta )
bnj1374.9  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
Assertion
Ref Expression
bnj1374  |-  ( f  e.  H  ->  f  e.  C )
Distinct variable groups:    x, A    B, f    y, C    x, R    f, d, x    y,
f, x
Allowed substitution hints:    ps( x, y, f, d)    ch( x, y, f, d)    ta( x, y, f, d)    A( y, f, d)    B( x, y, d)    C( x, f, d)    D( x, y, f, d)    R( y, f, d)    G( x, y, f, d)    H( x, y, f, d)    Y( x, y, f, d)    ta'( x, y, f, d)

Proof of Theorem bnj1374
StepHypRef Expression
1 bnj1374.9 . . . . . 6  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
21bnj1436 30910 . . . . 5  |-  ( f  e.  H  ->  E. y  e.  pred  ( x ,  A ,  R ) ta' )
3 rexex 3002 . . . . 5  |-  ( E. y  e.  pred  (
x ,  A ,  R ) ta'  ->  E. y ta' )
42, 3syl 17 . . . 4  |-  ( f  e.  H  ->  E. y ta' )
5 bnj1374.1 . . . . . 6  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
6 bnj1374.2 . . . . . 6  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
7 bnj1374.3 . . . . . 6  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
8 bnj1374.4 . . . . . 6  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
9 bnj1374.8 . . . . . 6  |-  ( ta'  <->  [. y  /  x ]. ta )
105, 6, 7, 8, 9bnj1373 31098 . . . . 5  |-  ( ta'  <->  (
f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) ) )
1110exbii 1774 . . . 4  |-  ( E. y ta'  <->  E. y ( f  e.  C  /\  dom  f  =  ( {
y }  u.  trCl ( y ,  A ,  R ) ) ) )
124, 11sylib 208 . . 3  |-  ( f  e.  H  ->  E. y
( f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) ) )
13 exsimpl 1795 . . 3  |-  ( E. y ( f  e.  C  /\  dom  f  =  ( { y }  u.  trCl (
y ,  A ,  R ) ) )  ->  E. y  f  e.  C )
1412, 13syl 17 . 2  |-  ( f  e.  H  ->  E. y 
f  e.  C )
1514bnj937 30842 1  |-  ( f  e.  H  ->  f  e.  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   [.wsbc 3435    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653   dom cdm 5114    |` cres 5116    Fn wfn 5883   ` cfv 5888    predc-bnj14 30754    FrSe w-bnj15 30758    trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-br 4654  df-bnj14 30755  df-bnj18 30761
This theorem is referenced by:  bnj1384  31100
  Copyright terms: Public domain W3C validator