| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1388 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1388.1 |
|
| bnj1388.2 |
|
| bnj1388.3 |
|
| bnj1388.4 |
|
| bnj1388.5 |
|
| bnj1388.6 |
|
| bnj1388.7 |
|
| bnj1388.8 |
|
| Ref | Expression |
|---|---|
| bnj1388 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1388.7 |
. . 3
| |
| 2 | nfv 1843 |
. . . 4
| |
| 3 | nfv 1843 |
. . . 4
| |
| 4 | nfra1 2941 |
. . . 4
| |
| 5 | 2, 3, 4 | nf3an 1831 |
. . 3
|
| 6 | 1, 5 | nfxfr 1779 |
. 2
|
| 7 | bnj1152 31066 |
. . . . . 6
| |
| 8 | 7 | simplbi 476 |
. . . . 5
|
| 9 | 8 | adantl 482 |
. . . 4
|
| 10 | 7 | biimpi 206 |
. . . . . . . . 9
|
| 11 | 10 | adantl 482 |
. . . . . . . 8
|
| 12 | 11 | simprd 479 |
. . . . . . 7
|
| 13 | 1 | simp3bi 1078 |
. . . . . . . 8
|
| 14 | 13 | adantr 481 |
. . . . . . 7
|
| 15 | df-ral 2917 |
. . . . . . . . 9
| |
| 16 | con2b 349 |
. . . . . . . . . 10
| |
| 17 | 16 | albii 1747 |
. . . . . . . . 9
|
| 18 | 15, 17 | bitri 264 |
. . . . . . . 8
|
| 19 | sp 2053 |
. . . . . . . . 9
| |
| 20 | 19 | impcom 446 |
. . . . . . . 8
|
| 21 | 18, 20 | sylan2b 492 |
. . . . . . 7
|
| 22 | 12, 14, 21 | syl2anc 693 |
. . . . . 6
|
| 23 | bnj1388.5 |
. . . . . . . 8
| |
| 24 | 23 | eleq2i 2693 |
. . . . . . 7
|
| 25 | nfcv 2764 |
. . . . . . . 8
| |
| 26 | nfcv 2764 |
. . . . . . . 8
| |
| 27 | bnj1388.8 |
. . . . . . . . . . 11
| |
| 28 | nfsbc1v 3455 |
. . . . . . . . . . 11
| |
| 29 | 27, 28 | nfxfr 1779 |
. . . . . . . . . 10
|
| 30 | 29 | nfex 2154 |
. . . . . . . . 9
|
| 31 | 30 | nfn 1784 |
. . . . . . . 8
|
| 32 | sbceq1a 3446 |
. . . . . . . . . . 11
| |
| 33 | 32, 27 | syl6bbr 278 |
. . . . . . . . . 10
|
| 34 | 33 | exbidv 1850 |
. . . . . . . . 9
|
| 35 | 34 | notbid 308 |
. . . . . . . 8
|
| 36 | 25, 26, 31, 35 | elrabf 3360 |
. . . . . . 7
|
| 37 | 24, 36 | bitri 264 |
. . . . . 6
|
| 38 | 22, 37 | sylnib 318 |
. . . . 5
|
| 39 | iman 440 |
. . . . 5
| |
| 40 | 38, 39 | sylibr 224 |
. . . 4
|
| 41 | 9, 40 | mpd 15 |
. . 3
|
| 42 | 41 | ex 450 |
. 2
|
| 43 | 6, 42 | ralrimi 2957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-bnj14 30755 |
| This theorem is referenced by: bnj1398 31102 bnj1489 31124 |
| Copyright terms: Public domain | W3C validator |