Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1400 Structured version   Visualization version   Unicode version

Theorem bnj1400 30906
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1400.1  |-  ( y  e.  A  ->  A. x  y  e.  A )
Assertion
Ref Expression
bnj1400  |-  dom  U. A  =  U_ x  e.  A  dom  x
Distinct variable groups:    y, A    x, y
Allowed substitution hint:    A( x)

Proof of Theorem bnj1400
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dmuni 5334 . 2  |-  dom  U. A  =  U_ z  e.  A  dom  z
2 df-iun 4522 . . 3  |-  U_ x  e.  A  dom  x  =  { y  |  E. x  e.  A  y  e.  dom  x }
3 df-iun 4522 . . . 4  |-  U_ z  e.  A  dom  z  =  { y  |  E. z  e.  A  y  e.  dom  z }
4 bnj1400.1 . . . . . . 7  |-  ( y  e.  A  ->  A. x  y  e.  A )
54nfcii 2755 . . . . . 6  |-  F/_ x A
6 nfcv 2764 . . . . . 6  |-  F/_ z A
7 nfv 1843 . . . . . 6  |-  F/ z  y  e.  dom  x
8 nfv 1843 . . . . . 6  |-  F/ x  y  e.  dom  z
9 dmeq 5324 . . . . . . 7  |-  ( x  =  z  ->  dom  x  =  dom  z )
109eleq2d 2687 . . . . . 6  |-  ( x  =  z  ->  (
y  e.  dom  x  <->  y  e.  dom  z ) )
115, 6, 7, 8, 10cbvrexf 3166 . . . . 5  |-  ( E. x  e.  A  y  e.  dom  x  <->  E. z  e.  A  y  e.  dom  z )
1211abbii 2739 . . . 4  |-  { y  |  E. x  e.  A  y  e.  dom  x }  =  {
y  |  E. z  e.  A  y  e.  dom  z }
133, 12eqtr4i 2647 . . 3  |-  U_ z  e.  A  dom  z  =  { y  |  E. x  e.  A  y  e.  dom  x }
142, 13eqtr4i 2647 . 2  |-  U_ x  e.  A  dom  x  = 
U_ z  e.  A  dom  z
151, 14eqtr4i 2647 1  |-  dom  U. A  =  U_ x  e.  A  dom  x
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   U.cuni 4436   U_ciun 4520   dom cdm 5114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-dm 5124
This theorem is referenced by:  bnj1398  31102  bnj1450  31118  bnj1498  31129  bnj1501  31135
  Copyright terms: Public domain W3C validator