| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmuni | Structured version Visualization version Unicode version | ||
| Description: The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.) |
| Ref | Expression |
|---|---|
| dmuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom 2042 |
. . . . 5
| |
| 2 | ancom 466 |
. . . . . . 7
| |
| 3 | 19.41v 1914 |
. . . . . . 7
| |
| 4 | vex 3203 |
. . . . . . . . 9
| |
| 5 | 4 | eldm2 5322 |
. . . . . . . 8
|
| 6 | 5 | anbi2i 730 |
. . . . . . 7
|
| 7 | 2, 3, 6 | 3bitr4i 292 |
. . . . . 6
|
| 8 | 7 | exbii 1774 |
. . . . 5
|
| 9 | 1, 8 | bitri 264 |
. . . 4
|
| 10 | eluni 4439 |
. . . . 5
| |
| 11 | 10 | exbii 1774 |
. . . 4
|
| 12 | df-rex 2918 |
. . . 4
| |
| 13 | 9, 11, 12 | 3bitr4i 292 |
. . 3
|
| 14 | 4 | eldm2 5322 |
. . 3
|
| 15 | eliun 4524 |
. . 3
| |
| 16 | 13, 14, 15 | 3bitr4i 292 |
. 2
|
| 17 | 16 | eqriv 2619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-dm 5124 |
| This theorem is referenced by: wfrdmss 7421 wfrdmcl 7423 tfrlem8 7480 axdc3lem2 9273 bnj1400 30906 frrlem5d 31787 frrlem5e 31788 frrlem7 31790 |
| Copyright terms: Public domain | W3C validator |