Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1498 Structured version   Visualization version   Unicode version

Theorem bnj1498 31129
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1498.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1498.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1498.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1498.4  |-  F  = 
U. C
Assertion
Ref Expression
bnj1498  |-  ( R 
FrSe  A  ->  dom  F  =  A )
Distinct variable groups:    A, d,
f, x    B, f    G, d, f, x    R, d, f, x
Allowed substitution hints:    B( x, d)    C( x, f, d)    F( x, f, d)    Y( x, f, d)

Proof of Theorem bnj1498
Dummy variables  t 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4524 . . . . . . 7  |-  ( z  e.  U_ f  e.  C  dom  f  <->  E. f  e.  C  z  e.  dom  f )
2 bnj1498.3 . . . . . . . . . . . . . . . 16  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
32bnj1436 30910 . . . . . . . . . . . . . . 15  |-  ( f  e.  C  ->  E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) )
43bnj1299 30889 . . . . . . . . . . . . . 14  |-  ( f  e.  C  ->  E. d  e.  B  f  Fn  d )
5 fndm 5990 . . . . . . . . . . . . . 14  |-  ( f  Fn  d  ->  dom  f  =  d )
64, 5bnj31 30785 . . . . . . . . . . . . 13  |-  ( f  e.  C  ->  E. d  e.  B  dom  f  =  d )
76bnj1196 30865 . . . . . . . . . . . 12  |-  ( f  e.  C  ->  E. d
( d  e.  B  /\  dom  f  =  d ) )
8 bnj1498.1 . . . . . . . . . . . . . . 15  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
98bnj1436 30910 . . . . . . . . . . . . . 14  |-  ( d  e.  B  ->  (
d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) )
109simpld 475 . . . . . . . . . . . . 13  |-  ( d  e.  B  ->  d  C_  A )
1110anim1i 592 . . . . . . . . . . . 12  |-  ( ( d  e.  B  /\  dom  f  =  d
)  ->  ( d  C_  A  /\  dom  f  =  d ) )
127, 11bnj593 30815 . . . . . . . . . . 11  |-  ( f  e.  C  ->  E. d
( d  C_  A  /\  dom  f  =  d ) )
13 sseq1 3626 . . . . . . . . . . . 12  |-  ( dom  f  =  d  -> 
( dom  f  C_  A 
<->  d  C_  A )
)
1413biimparc 504 . . . . . . . . . . 11  |-  ( ( d  C_  A  /\  dom  f  =  d
)  ->  dom  f  C_  A )
1512, 14bnj593 30815 . . . . . . . . . 10  |-  ( f  e.  C  ->  E. d dom  f  C_  A )
1615bnj937 30842 . . . . . . . . 9  |-  ( f  e.  C  ->  dom  f  C_  A )
1716sselda 3603 . . . . . . . 8  |-  ( ( f  e.  C  /\  z  e.  dom  f )  ->  z  e.  A
)
1817rexlimiva 3028 . . . . . . 7  |-  ( E. f  e.  C  z  e.  dom  f  -> 
z  e.  A )
191, 18sylbi 207 . . . . . 6  |-  ( z  e.  U_ f  e.  C  dom  f  -> 
z  e.  A )
202bnj1317 30892 . . . . . . 7  |-  ( w  e.  C  ->  A. f  w  e.  C )
2120bnj1400 30906 . . . . . 6  |-  dom  U. C  =  U_ f  e.  C  dom  f
2219, 21eleq2s 2719 . . . . 5  |-  ( z  e.  dom  U. C  ->  z  e.  A )
23 bnj1498.4 . . . . . 6  |-  F  = 
U. C
2423dmeqi 5325 . . . . 5  |-  dom  F  =  dom  U. C
2522, 24eleq2s 2719 . . . 4  |-  ( z  e.  dom  F  -> 
z  e.  A )
2625ssriv 3607 . . 3  |-  dom  F  C_  A
2726a1i 11 . 2  |-  ( R 
FrSe  A  ->  dom  F  C_  A )
28 bnj1498.2 . . . . . . . 8  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
298, 28, 2bnj1493 31127 . . . . . . 7  |-  ( R 
FrSe  A  ->  A. x  e.  A  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
30 vsnid 4209 . . . . . . . . . . 11  |-  x  e. 
{ x }
31 elun1 3780 . . . . . . . . . . 11  |-  ( x  e.  { x }  ->  x  e.  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
3230, 31ax-mp 5 . . . . . . . . . 10  |-  x  e.  ( { x }  u.  trCl ( x ,  A ,  R ) )
33 eleq2 2690 . . . . . . . . . 10  |-  ( dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) )  -> 
( x  e.  dom  f 
<->  x  e.  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
3432, 33mpbiri 248 . . . . . . . . 9  |-  ( dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) )  ->  x  e.  dom  f )
3534reximi 3011 . . . . . . . 8  |-  ( E. f  e.  C  dom  f  =  ( {
x }  u.  trCl ( x ,  A ,  R ) )  ->  E. f  e.  C  x  e.  dom  f )
3635ralimi 2952 . . . . . . 7  |-  ( A. x  e.  A  E. f  e.  C  dom  f  =  ( {
x }  u.  trCl ( x ,  A ,  R ) )  ->  A. x  e.  A  E. f  e.  C  x  e.  dom  f )
3729, 36syl 17 . . . . . 6  |-  ( R 
FrSe  A  ->  A. x  e.  A  E. f  e.  C  x  e.  dom  f )
38 eliun 4524 . . . . . . 7  |-  ( x  e.  U_ f  e.  C  dom  f  <->  E. f  e.  C  x  e.  dom  f )
3938ralbii 2980 . . . . . 6  |-  ( A. x  e.  A  x  e.  U_ f  e.  C  dom  f  <->  A. x  e.  A  E. f  e.  C  x  e.  dom  f )
4037, 39sylibr 224 . . . . 5  |-  ( R 
FrSe  A  ->  A. x  e.  A  x  e.  U_ f  e.  C  dom  f )
41 nfcv 2764 . . . . . 6  |-  F/_ x A
428bnj1309 31090 . . . . . . . . 9  |-  ( t  e.  B  ->  A. x  t  e.  B )
432, 42bnj1307 31091 . . . . . . . 8  |-  ( t  e.  C  ->  A. x  t  e.  C )
4443nfcii 2755 . . . . . . 7  |-  F/_ x C
45 nfcv 2764 . . . . . . 7  |-  F/_ x dom  f
4644, 45nfiun 4548 . . . . . 6  |-  F/_ x U_ f  e.  C  dom  f
4741, 46dfss3f 3595 . . . . 5  |-  ( A 
C_  U_ f  e.  C  dom  f  <->  A. x  e.  A  x  e.  U_ f  e.  C  dom  f )
4840, 47sylibr 224 . . . 4  |-  ( R 
FrSe  A  ->  A  C_  U_ f  e.  C  dom  f )
4948, 21syl6sseqr 3652 . . 3  |-  ( R 
FrSe  A  ->  A  C_  dom  U. C )
5049, 24syl6sseqr 3652 . 2  |-  ( R 
FrSe  A  ->  A  C_  dom  F )
5127, 50eqssd 3620 1  |-  ( R 
FrSe  A  ->  dom  F  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    u. cun 3572    C_ wss 3574   {csn 4177   <.cop 4183   U.cuni 4436   U_ciun 4520   dom cdm 5114    |` cres 5116    Fn wfn 5883   ` cfv 5888    predc-bnj14 30754    FrSe w-bnj15 30758    trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj60  31130
  Copyright terms: Public domain W3C validator