Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj535 Structured version   Visualization version   Unicode version

Theorem bnj535 30960
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj535.1  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj535.2  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj535.3  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
bnj535.4  |-  ( ta  <->  ( ph'  /\  ps'  /\  m  e. 
om  /\  p  e.  m ) )
Assertion
Ref Expression
bnj535  |-  ( ( R  FrSe  A  /\  ta  /\  n  =  ( m  u.  { m } )  /\  f  Fn  m )  ->  G  Fn  n )
Distinct variable groups:    A, i, p, y    R, i, p, y    f, i, p, y    i, m, p   
p, ph'
Allowed substitution hints:    ta( x, y, f, i, m, n, p)    A( x, f, m, n)    R( x, f, m, n)    G( x, y, f, i, m, n, p)    ph'( x, y, f, i, m, n)    ps'( x, y, f, i, m, n, p)

Proof of Theorem bnj535
StepHypRef Expression
1 bnj422 30781 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  n  =  ( m  u.  { m } )  /\  f  Fn  m )  <->  ( n  =  ( m  u. 
{ m } )  /\  f  Fn  m  /\  R  FrSe  A  /\  ta ) )
2 bnj251 30768 . . 3  |-  ( ( n  =  ( m  u.  { m }
)  /\  f  Fn  m  /\  R  FrSe  A  /\  ta )  <->  ( n  =  ( m  u. 
{ m } )  /\  ( f  Fn  m  /\  ( R 
FrSe  A  /\  ta )
) ) )
31, 2bitri 264 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  n  =  ( m  u.  { m } )  /\  f  Fn  m )  <->  ( n  =  ( m  u. 
{ m } )  /\  ( f  Fn  m  /\  ( R 
FrSe  A  /\  ta )
) ) )
4 fvex 6201 . . . . . . . . 9  |-  ( f `
 p )  e. 
_V
5 bnj535.1 . . . . . . . . . 10  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
6 bnj535.2 . . . . . . . . . 10  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
7 bnj535.4 . . . . . . . . . 10  |-  ( ta  <->  ( ph'  /\  ps'  /\  m  e. 
om  /\  p  e.  m ) )
85, 6, 7bnj518 30956 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  ta )  ->  A. y  e.  ( f `  p
)  pred ( y ,  A ,  R )  e.  _V )
9 iunexg 7143 . . . . . . . . 9  |-  ( ( ( f `  p
)  e.  _V  /\  A. y  e.  ( f `
 p )  pred ( y ,  A ,  R )  e.  _V )  ->  U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )  e.  _V )
104, 8, 9sylancr 695 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  ta )  ->  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )  e.  _V )
11 vex 3203 . . . . . . . . 9  |-  m  e. 
_V
1211bnj519 30804 . . . . . . . 8  |-  ( U_ y  e.  ( f `  p )  pred (
y ,  A ,  R )  e.  _V  ->  Fun  { <. m ,  U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
>. } )
1310, 12syl 17 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta )  ->  Fun  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
14 dmsnopg 5606 . . . . . . . 8  |-  ( U_ y  e.  ( f `  p )  pred (
y ,  A ,  R )  e.  _V  ->  dom  { <. m ,  U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
>. }  =  { m } )
1510, 14syl 17 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta )  ->  dom  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. }  =  { m } )
1613, 15bnj1422 30908 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta )  ->  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. }  Fn  { m } )
17 bnj521 30805 . . . . . . 7  |-  ( m  i^i  { m }
)  =  (/)
18 fnun 5997 . . . . . . 7  |-  ( ( ( f  Fn  m  /\  { <. m ,  U_ y  e.  ( f `  p )  pred (
y ,  A ,  R ) >. }  Fn  { m } )  /\  ( m  i^i  { m } )  =  (/) )  ->  ( f  u. 
{ <. m ,  U_ y  e.  ( f `  p )  pred (
y ,  A ,  R ) >. } )  Fn  ( m  u. 
{ m } ) )
1917, 18mpan2 707 . . . . . 6  |-  ( ( f  Fn  m  /\  {
<. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. }  Fn  { m } )  ->  (
f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )  Fn  (
m  u.  { m } ) )
2016, 19sylan2 491 . . . . 5  |-  ( ( f  Fn  m  /\  ( R  FrSe  A  /\  ta ) )  ->  (
f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )  Fn  (
m  u.  { m } ) )
21 bnj535.3 . . . . . 6  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
2221fneq1i 5985 . . . . 5  |-  ( G  Fn  ( m  u. 
{ m } )  <-> 
( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )  Fn  (
m  u.  { m } ) )
2320, 22sylibr 224 . . . 4  |-  ( ( f  Fn  m  /\  ( R  FrSe  A  /\  ta ) )  ->  G  Fn  ( m  u.  {
m } ) )
24 fneq2 5980 . . . 4  |-  ( n  =  ( m  u. 
{ m } )  ->  ( G  Fn  n 
<->  G  Fn  ( m  u.  { m }
) ) )
2523, 24syl5ibr 236 . . 3  |-  ( n  =  ( m  u. 
{ m } )  ->  ( ( f  Fn  m  /\  ( R  FrSe  A  /\  ta ) )  ->  G  Fn  n ) )
2625imp 445 . 2  |-  ( ( n  =  ( m  u.  { m }
)  /\  ( f  Fn  m  /\  ( R  FrSe  A  /\  ta ) ) )  ->  G  Fn  n )
273, 26sylbi 207 1  |-  ( ( R  FrSe  A  /\  ta  /\  n  =  ( m  u.  { m } )  /\  f  Fn  m )  ->  G  Fn  n )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520   dom cdm 5114   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj543  30963
  Copyright terms: Public domain W3C validator