| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elirr | Structured version Visualization version Unicode version | ||
| Description: No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| elirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 |
. . . . 5
| |
| 2 | 1, 1 | eleq12d 2695 |
. . . 4
|
| 3 | 2 | notbid 308 |
. . 3
|
| 4 | elirrv 8504 |
. . 3
| |
| 5 | 3, 4 | vtoclg 3266 |
. 2
|
| 6 | pm2.01 180 |
. 2
| |
| 7 | 5, 6 | ax-mp 5 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: sucprcreg 8506 alephval3 8933 n0lplig 27335 bnj521 30805 rankeq1o 32278 hfninf 32293 bj-disjcsn 32936 |
| Copyright terms: Public domain | W3C validator |