| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj605 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj605.5 |
|
| bnj605.13 |
|
| bnj605.14 |
|
| bnj605.17 |
|
| bnj605.19 |
|
| bnj605.28 |
|
| bnj605.31 |
|
| bnj605.32 |
|
| bnj605.33 |
|
| bnj605.37 |
|
| bnj605.38 |
|
| bnj605.41 |
|
| bnj605.42 |
|
| bnj605.43 |
|
| Ref | Expression |
|---|---|
| bnj605 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj605.37 |
. . . . 5
| |
| 2 | 1 | anim1i 592 |
. . . 4
|
| 3 | nfv 1843 |
. . . . . . 7
| |
| 4 | 3 | 19.41 2103 |
. . . . . 6
|
| 5 | 4 | exbii 1774 |
. . . . 5
|
| 6 | bnj605.5 |
. . . . . . . 8
| |
| 7 | 6 | bnj1095 30852 |
. . . . . . 7
|
| 8 | 7 | nf5i 2024 |
. . . . . 6
|
| 9 | 8 | 19.41 2103 |
. . . . 5
|
| 10 | 5, 9 | bitr2i 265 |
. . . 4
|
| 11 | 2, 10 | sylib 208 |
. . 3
|
| 12 | bnj605.19 |
. . . . . . . . . 10
| |
| 13 | 12 | bnj1232 30874 |
. . . . . . . . 9
|
| 14 | bnj219 30801 |
. . . . . . . . . 10
| |
| 15 | 12, 14 | bnj770 30833 |
. . . . . . . . 9
|
| 16 | 13, 15 | jca 554 |
. . . . . . . 8
|
| 17 | 16 | anim1i 592 |
. . . . . . 7
|
| 18 | bnj170 30764 |
. . . . . . 7
| |
| 19 | 17, 18 | sylibr 224 |
. . . . . 6
|
| 20 | bnj605.38 |
. . . . . 6
| |
| 21 | 19, 20 | syl 17 |
. . . . 5
|
| 22 | simpl 473 |
. . . . 5
| |
| 23 | 21, 22 | jca 554 |
. . . 4
|
| 24 | 23 | 2eximi 1763 |
. . 3
|
| 25 | bnj248 30766 |
. . . . . . . 8
| |
| 26 | bnj605.31 |
. . . . . . . . . . 11
| |
| 27 | pm3.35 611 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | sylan2b 492 |
. . . . . . . . . 10
|
| 29 | euex 2494 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | syl 17 |
. . . . . . . . 9
|
| 31 | bnj605.17 |
. . . . . . . . 9
| |
| 32 | 30, 31 | bnj1198 30866 |
. . . . . . . 8
|
| 33 | 25, 32 | bnj832 30828 |
. . . . . . 7
|
| 34 | bnj605.41 |
. . . . . . . . . . . . . 14
| |
| 35 | bnj605.42 |
. . . . . . . . . . . . . 14
| |
| 36 | bnj605.43 |
. . . . . . . . . . . . . 14
| |
| 37 | 34, 35, 36 | 3jca 1242 |
. . . . . . . . . . . . 13
|
| 38 | 37 | 3com23 1271 |
. . . . . . . . . . . 12
|
| 39 | 38 | 3expia 1267 |
. . . . . . . . . . 11
|
| 40 | 39 | eximdv 1846 |
. . . . . . . . . 10
|
| 41 | 40 | adantlr 751 |
. . . . . . . . 9
|
| 42 | 41 | adantlr 751 |
. . . . . . . 8
|
| 43 | 25, 42 | sylbi 207 |
. . . . . . 7
|
| 44 | 33, 43 | mpd 15 |
. . . . . 6
|
| 45 | bnj432 30782 |
. . . . . 6
| |
| 46 | biid 251 |
. . . . . . . 8
| |
| 47 | bnj605.13 |
. . . . . . . . 9
| |
| 48 | sbcid 3452 |
. . . . . . . . 9
| |
| 49 | 47, 48 | bitri 264 |
. . . . . . . 8
|
| 50 | bnj605.14 |
. . . . . . . . 9
| |
| 51 | sbcid 3452 |
. . . . . . . . 9
| |
| 52 | 50, 51 | bitri 264 |
. . . . . . . 8
|
| 53 | 46, 49, 52 | 3anbi123i 1251 |
. . . . . . 7
|
| 54 | 53 | exbii 1774 |
. . . . . 6
|
| 55 | 44, 45, 54 | 3imtr3i 280 |
. . . . 5
|
| 56 | 55 | ex 450 |
. . . 4
|
| 57 | 56 | exlimivv 1860 |
. . 3
|
| 58 | 11, 24, 57 | 3syl 18 |
. 2
|
| 59 | 58 | 3impa 1259 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-eprel 5029 df-suc 5729 df-bnj17 30753 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |