| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj571 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj571.3 |
|
| bnj571.16 |
|
| bnj571.17 |
|
| bnj571.18 |
|
| bnj571.19 |
|
| bnj571.20 |
|
| bnj571.22 |
|
| bnj571.23 |
|
| bnj571.24 |
|
| bnj571.25 |
|
| bnj571.26 |
|
| bnj571.29 |
|
| bnj571.30 |
|
| bnj571.38 |
|
| bnj571.21 |
|
| bnj571.40 |
|
| bnj571.33 |
|
| Ref | Expression |
|---|---|
| bnj571 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . 4
| |
| 2 | bnj571.17 |
. . . . 5
| |
| 3 | nfv 1843 |
. . . . . 6
| |
| 4 | nfv 1843 |
. . . . . 6
| |
| 5 | bnj571.30 |
. . . . . . 7
| |
| 6 | nfra1 2941 |
. . . . . . 7
| |
| 7 | 5, 6 | nfxfr 1779 |
. . . . . 6
|
| 8 | 3, 4, 7 | nf3an 1831 |
. . . . 5
|
| 9 | 2, 8 | nfxfr 1779 |
. . . 4
|
| 10 | nfv 1843 |
. . . 4
| |
| 11 | 1, 9, 10 | nf3an 1831 |
. . 3
|
| 12 | df-bnj17 30753 |
. . . . . . . . 9
| |
| 13 | 3anass 1042 |
. . . . . . . . . 10
| |
| 14 | 3anrot 1043 |
. . . . . . . . . 10
| |
| 15 | bnj571.20 |
. . . . . . . . . . . 12
| |
| 16 | df-3an 1039 |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | bitri 264 |
. . . . . . . . . . 11
|
| 18 | 17 | anbi2i 730 |
. . . . . . . . . 10
|
| 19 | 13, 14, 18 | 3bitr4ri 293 |
. . . . . . . . 9
|
| 20 | 12, 19 | bitri 264 |
. . . . . . . 8
|
| 21 | bnj571.3 |
. . . . . . . . 9
| |
| 22 | bnj571.16 |
. . . . . . . . 9
| |
| 23 | bnj571.18 |
. . . . . . . . 9
| |
| 24 | bnj571.19 |
. . . . . . . . 9
| |
| 25 | bnj571.22 |
. . . . . . . . 9
| |
| 26 | bnj571.23 |
. . . . . . . . 9
| |
| 27 | bnj571.24 |
. . . . . . . . 9
| |
| 28 | bnj571.25 |
. . . . . . . . 9
| |
| 29 | bnj571.26 |
. . . . . . . . 9
| |
| 30 | bnj571.29 |
. . . . . . . . 9
| |
| 31 | bnj571.38 |
. . . . . . . . 9
| |
| 32 | 21, 22, 2, 23, 24, 15, 25, 26, 27, 28, 29, 30, 5, 31 | bnj558 30972 |
. . . . . . . 8
|
| 33 | 20, 32 | sylbir 225 |
. . . . . . 7
|
| 34 | 33 | 3expib 1268 |
. . . . . 6
|
| 35 | df-bnj17 30753 |
. . . . . . . . 9
| |
| 36 | 3anass 1042 |
. . . . . . . . . 10
| |
| 37 | 3anrot 1043 |
. . . . . . . . . 10
| |
| 38 | bnj571.21 |
. . . . . . . . . . . 12
| |
| 39 | df-3an 1039 |
. . . . . . . . . . . 12
| |
| 40 | 38, 39 | bitri 264 |
. . . . . . . . . . 11
|
| 41 | 40 | anbi2i 730 |
. . . . . . . . . 10
|
| 42 | 36, 37, 41 | 3bitr4ri 293 |
. . . . . . . . 9
|
| 43 | 35, 42 | bitri 264 |
. . . . . . . 8
|
| 44 | bnj571.40 |
. . . . . . . . 9
| |
| 45 | 21, 2, 24, 38, 27, 22, 44, 5 | bnj570 30975 |
. . . . . . . 8
|
| 46 | 43, 45 | sylbir 225 |
. . . . . . 7
|
| 47 | 46 | 3expib 1268 |
. . . . . 6
|
| 48 | 34, 47 | pm2.61ine 2877 |
. . . . 5
|
| 49 | 48, 27 | syl6eq 2672 |
. . . 4
|
| 50 | 49 | exp32 631 |
. . 3
|
| 51 | 11, 50 | alrimi 2082 |
. 2
|
| 52 | bnj571.33 |
. . 3
| |
| 53 | 52 | bnj946 30845 |
. 2
|
| 54 | 51, 53 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-om 7066 df-bnj17 30753 |
| This theorem is referenced by: bnj600 30989 bnj908 31001 |
| Copyright terms: Public domain | W3C validator |