Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj571 Structured version   Visualization version   Unicode version

Theorem bnj571 30976
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj571.3  |-  D  =  ( om  \  { (/)
} )
bnj571.16  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
bnj571.17  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj571.18  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
bnj571.19  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
bnj571.20  |-  ( ze  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i ) )
bnj571.22  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
bnj571.23  |-  C  = 
U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
bnj571.24  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
bnj571.25  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
bnj571.26  |-  G  =  ( f  u.  { <. m ,  C >. } )
bnj571.29  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj571.30  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj571.38  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
bnj571.21  |-  ( rh  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
) )
bnj571.40  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  G  Fn  n )
bnj571.33  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( G `
 suc  i )  =  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj571  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  ps" )
Distinct variable groups:    A, i, p, y    y, G    R, i, p, y    et, i    f, i, p, y    i, m, p    i, ph', p
Allowed substitution hints:    ta( x, y, f, i, m, n, p)    et( x, y, f, m, n, p)    ze( x, y, f, i, m, n, p)    si( x, y, f, i, m, n, p)    rh( x, y, f, i, m, n, p)    A( x, f, m, n)    B( x, y, f, i, m, n, p)    C( x, y, f, i, m, n, p)    D( x, y, f, i, m, n, p)    R( x, f, m, n)    G( x, f, i, m, n, p)    K( x, y, f, i, m, n, p)    L( x, y, f, i, m, n, p)    ph'( x, y, f, m, n)    ps'( x, y, f, i, m, n, p)    ps"( x, y, f, i, m, n, p)

Proof of Theorem bnj571
StepHypRef Expression
1 nfv 1843 . . . 4  |-  F/ i  R  FrSe  A
2 bnj571.17 . . . . 5  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
3 nfv 1843 . . . . . 6  |-  F/ i  f  Fn  m
4 nfv 1843 . . . . . 6  |-  F/ i ph'
5 bnj571.30 . . . . . . 7  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
6 nfra1 2941 . . . . . . 7  |-  F/ i A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
75, 6nfxfr 1779 . . . . . 6  |-  F/ i ps'
83, 4, 7nf3an 1831 . . . . 5  |-  F/ i ( f  Fn  m  /\  ph'  /\  ps' )
92, 8nfxfr 1779 . . . 4  |-  F/ i ta
10 nfv 1843 . . . 4  |-  F/ i et
111, 9, 10nf3an 1831 . . 3  |-  F/ i ( R  FrSe  A  /\  ta  /\  et )
12 df-bnj17 30753 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  ze ) 
<->  ( ( R  FrSe  A  /\  ta  /\  et )  /\  ze ) )
13 3anass 1042 . . . . . . . . . 10  |-  ( ( ( R  FrSe  A  /\  ta  /\  et )  /\  ( i  e. 
om  /\  suc  i  e.  n )  /\  m  =  suc  i )  <->  ( ( R  FrSe  A  /\  ta  /\  et )  /\  (
( i  e.  om  /\ 
suc  i  e.  n
)  /\  m  =  suc  i ) ) )
14 3anrot 1043 . . . . . . . . . 10  |-  ( ( m  =  suc  i  /\  ( R  FrSe  A  /\  ta  /\  et )  /\  ( i  e. 
om  /\  suc  i  e.  n ) )  <->  ( ( R  FrSe  A  /\  ta  /\  et )  /\  (
i  e.  om  /\  suc  i  e.  n
)  /\  m  =  suc  i ) )
15 bnj571.20 . . . . . . . . . . . 12  |-  ( ze  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i ) )
16 df-3an 1039 . . . . . . . . . . . 12  |-  ( ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i )  <->  ( (
i  e.  om  /\  suc  i  e.  n
)  /\  m  =  suc  i ) )
1715, 16bitri 264 . . . . . . . . . . 11  |-  ( ze  <->  ( ( i  e.  om  /\ 
suc  i  e.  n
)  /\  m  =  suc  i ) )
1817anbi2i 730 . . . . . . . . . 10  |-  ( ( ( R  FrSe  A  /\  ta  /\  et )  /\  ze )  <->  ( ( R  FrSe  A  /\  ta  /\  et )  /\  (
( i  e.  om  /\ 
suc  i  e.  n
)  /\  m  =  suc  i ) ) )
1913, 14, 183bitr4ri 293 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  ta  /\  et )  /\  ze )  <->  ( m  =  suc  i  /\  ( R  FrSe  A  /\  ta  /\  et )  /\  (
i  e.  om  /\  suc  i  e.  n
) ) )
2012, 19bitri 264 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  ze ) 
<->  ( m  =  suc  i  /\  ( R  FrSe  A  /\  ta  /\  et )  /\  ( i  e. 
om  /\  suc  i  e.  n ) ) )
21 bnj571.3 . . . . . . . . 9  |-  D  =  ( om  \  { (/)
} )
22 bnj571.16 . . . . . . . . 9  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
23 bnj571.18 . . . . . . . . 9  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
24 bnj571.19 . . . . . . . . 9  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
25 bnj571.22 . . . . . . . . 9  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
26 bnj571.23 . . . . . . . . 9  |-  C  = 
U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
27 bnj571.24 . . . . . . . . 9  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
28 bnj571.25 . . . . . . . . 9  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
29 bnj571.26 . . . . . . . . 9  |-  G  =  ( f  u.  { <. m ,  C >. } )
30 bnj571.29 . . . . . . . . 9  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
31 bnj571.38 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
3221, 22, 2, 23, 24, 15, 25, 26, 27, 28, 29, 30, 5, 31bnj558 30972 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  ze )  ->  ( G `  suc  i )  =  K )
3320, 32sylbir 225 . . . . . . 7  |-  ( ( m  =  suc  i  /\  ( R  FrSe  A  /\  ta  /\  et )  /\  ( i  e. 
om  /\  suc  i  e.  n ) )  -> 
( G `  suc  i )  =  K )
34333expib 1268 . . . . . 6  |-  ( m  =  suc  i  -> 
( ( ( R 
FrSe  A  /\  ta  /\  et )  /\  (
i  e.  om  /\  suc  i  e.  n
) )  ->  ( G `  suc  i )  =  K ) )
35 df-bnj17 30753 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh ) 
<->  ( ( R  FrSe  A  /\  ta  /\  et )  /\  rh ) )
36 3anass 1042 . . . . . . . . . 10  |-  ( ( ( R  FrSe  A  /\  ta  /\  et )  /\  ( i  e. 
om  /\  suc  i  e.  n )  /\  m  =/=  suc  i )  <->  ( ( R  FrSe  A  /\  ta  /\  et )  /\  (
( i  e.  om  /\ 
suc  i  e.  n
)  /\  m  =/=  suc  i ) ) )
37 3anrot 1043 . . . . . . . . . 10  |-  ( ( m  =/=  suc  i  /\  ( R  FrSe  A  /\  ta  /\  et )  /\  ( i  e. 
om  /\  suc  i  e.  n ) )  <->  ( ( R  FrSe  A  /\  ta  /\  et )  /\  (
i  e.  om  /\  suc  i  e.  n
)  /\  m  =/=  suc  i ) )
38 bnj571.21 . . . . . . . . . . . 12  |-  ( rh  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
) )
39 df-3an 1039 . . . . . . . . . . . 12  |-  ( ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
)  <->  ( ( i  e.  om  /\  suc  i  e.  n )  /\  m  =/=  suc  i
) )
4038, 39bitri 264 . . . . . . . . . . 11  |-  ( rh  <->  ( ( i  e.  om  /\ 
suc  i  e.  n
)  /\  m  =/=  suc  i ) )
4140anbi2i 730 . . . . . . . . . 10  |-  ( ( ( R  FrSe  A  /\  ta  /\  et )  /\  rh )  <->  ( ( R  FrSe  A  /\  ta  /\  et )  /\  (
( i  e.  om  /\ 
suc  i  e.  n
)  /\  m  =/=  suc  i ) ) )
4236, 37, 413bitr4ri 293 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  ta  /\  et )  /\  rh )  <->  ( m  =/=  suc  i  /\  ( R  FrSe  A  /\  ta  /\  et )  /\  (
i  e.  om  /\  suc  i  e.  n
) ) )
4335, 42bitri 264 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh ) 
<->  ( m  =/=  suc  i  /\  ( R  FrSe  A  /\  ta  /\  et )  /\  ( i  e. 
om  /\  suc  i  e.  n ) ) )
44 bnj571.40 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  G  Fn  n )
4521, 2, 24, 38, 27, 22, 44, 5bnj570 30975 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  K )
4643, 45sylbir 225 . . . . . . 7  |-  ( ( m  =/=  suc  i  /\  ( R  FrSe  A  /\  ta  /\  et )  /\  ( i  e. 
om  /\  suc  i  e.  n ) )  -> 
( G `  suc  i )  =  K )
47463expib 1268 . . . . . 6  |-  ( m  =/=  suc  i  ->  ( ( ( R  FrSe  A  /\  ta  /\  et )  /\  ( i  e. 
om  /\  suc  i  e.  n ) )  -> 
( G `  suc  i )  =  K ) )
4834, 47pm2.61ine 2877 . . . . 5  |-  ( ( ( R  FrSe  A  /\  ta  /\  et )  /\  ( i  e. 
om  /\  suc  i  e.  n ) )  -> 
( G `  suc  i )  =  K )
4948, 27syl6eq 2672 . . . 4  |-  ( ( ( R  FrSe  A  /\  ta  /\  et )  /\  ( i  e. 
om  /\  suc  i  e.  n ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
5049exp32 631 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et )  -> 
( i  e.  om  ->  ( suc  i  e.  n  ->  ( G `  suc  i )  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) ) )
5111, 50alrimi 2082 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  A. i ( i  e. 
om  ->  ( suc  i  e.  n  ->  ( G `
 suc  i )  =  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) ) )
52 bnj571.33 . . 3  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( G `
 suc  i )  =  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) )
5352bnj946 30845 . 2  |-  ( ps"  <->  A. i
( i  e.  om  ->  ( suc  i  e.  n  ->  ( G `  suc  i )  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) ) )
5451, 53sylibr 224 1  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  ps" )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    u. cun 3572   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-om 7066  df-bnj17 30753
This theorem is referenced by:  bnj600  30989  bnj908  31001
  Copyright terms: Public domain W3C validator