| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br4 | Structured version Visualization version Unicode version | ||
| Description: Substitution for a four-place predicate. (Contributed by Scott Fenton, 9-Oct-2013.) (Revised by Mario Carneiro, 14-Oct-2013.) |
| Ref | Expression |
|---|---|
| br4.1 |
|
| br4.2 |
|
| br4.3 |
|
| br4.4 |
|
| br4.5 |
|
| br4.6 |
|
| Ref | Expression |
|---|---|
| br4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 4932 |
. . 3
| |
| 2 | opex 4932 |
. . 3
| |
| 3 | eqeq1 2626 |
. . . . . . 7
| |
| 4 | 3 | 3anbi1d 1403 |
. . . . . 6
|
| 5 | 4 | rexbidv 3052 |
. . . . 5
|
| 6 | 5 | 2rexbidv 3057 |
. . . 4
|
| 7 | 6 | 2rexbidv 3057 |
. . 3
|
| 8 | eqeq1 2626 |
. . . . . . 7
| |
| 9 | 8 | 3anbi2d 1404 |
. . . . . 6
|
| 10 | 9 | rexbidv 3052 |
. . . . 5
|
| 11 | 10 | 2rexbidv 3057 |
. . . 4
|
| 12 | 11 | 2rexbidv 3057 |
. . 3
|
| 13 | br4.6 |
. . 3
| |
| 14 | 1, 2, 7, 12, 13 | brab 4998 |
. 2
|
| 15 | vex 3203 |
. . . . . . . . . . . 12
| |
| 16 | vex 3203 |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | opth 4945 |
. . . . . . . . . . 11
|
| 18 | br4.1 |
. . . . . . . . . . . 12
| |
| 19 | br4.2 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | sylan9bb 736 |
. . . . . . . . . . 11
|
| 21 | 17, 20 | sylbi 207 |
. . . . . . . . . 10
|
| 22 | 21 | eqcoms 2630 |
. . . . . . . . 9
|
| 23 | vex 3203 |
. . . . . . . . . . . 12
| |
| 24 | vex 3203 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | opth 4945 |
. . . . . . . . . . 11
|
| 26 | br4.3 |
. . . . . . . . . . . 12
| |
| 27 | br4.4 |
. . . . . . . . . . . 12
| |
| 28 | 26, 27 | sylan9bb 736 |
. . . . . . . . . . 11
|
| 29 | 25, 28 | sylbi 207 |
. . . . . . . . . 10
|
| 30 | 29 | eqcoms 2630 |
. . . . . . . . 9
|
| 31 | 22, 30 | sylan9bb 736 |
. . . . . . . 8
|
| 32 | 31 | biimp3a 1432 |
. . . . . . 7
|
| 33 | 32 | a1i 11 |
. . . . . 6
|
| 34 | 33 | rexlimdva 3031 |
. . . . 5
|
| 35 | 34 | rexlimdvva 3038 |
. . . 4
|
| 36 | 35 | rexlimdvva 3038 |
. . 3
|
| 37 | simpl1 1064 |
. . . . 5
| |
| 38 | simpl2l 1114 |
. . . . . 6
| |
| 39 | simpl2r 1115 |
. . . . . 6
| |
| 40 | simpl3l 1116 |
. . . . . . 7
| |
| 41 | simpl3r 1117 |
. . . . . . 7
| |
| 42 | eqidd 2623 |
. . . . . . 7
| |
| 43 | eqidd 2623 |
. . . . . . 7
| |
| 44 | simpr 477 |
. . . . . . 7
| |
| 45 | opeq1 4402 |
. . . . . . . . . 10
| |
| 46 | 45 | eqeq2d 2632 |
. . . . . . . . 9
|
| 47 | 46, 26 | 3anbi23d 1402 |
. . . . . . . 8
|
| 48 | opeq2 4403 |
. . . . . . . . . 10
| |
| 49 | 48 | eqeq2d 2632 |
. . . . . . . . 9
|
| 50 | 49, 27 | 3anbi23d 1402 |
. . . . . . . 8
|
| 51 | 47, 50 | rspc2ev 3324 |
. . . . . . 7
|
| 52 | 40, 41, 42, 43, 44, 51 | syl113anc 1338 |
. . . . . 6
|
| 53 | opeq1 4402 |
. . . . . . . . . 10
| |
| 54 | 53 | eqeq2d 2632 |
. . . . . . . . 9
|
| 55 | 54, 18 | 3anbi13d 1401 |
. . . . . . . 8
|
| 56 | 55 | 2rexbidv 3057 |
. . . . . . 7
|
| 57 | opeq2 4403 |
. . . . . . . . . 10
| |
| 58 | 57 | eqeq2d 2632 |
. . . . . . . . 9
|
| 59 | 58, 19 | 3anbi13d 1401 |
. . . . . . . 8
|
| 60 | 59 | 2rexbidv 3057 |
. . . . . . 7
|
| 61 | 56, 60 | rspc2ev 3324 |
. . . . . 6
|
| 62 | 38, 39, 52, 61 | syl3anc 1326 |
. . . . 5
|
| 63 | br4.5 |
. . . . . . 7
| |
| 64 | 63 | rexeqdv 3145 |
. . . . . . . . 9
|
| 65 | 63, 64 | rexeqbidv 3153 |
. . . . . . . 8
|
| 66 | 63, 65 | rexeqbidv 3153 |
. . . . . . 7
|
| 67 | 63, 66 | rexeqbidv 3153 |
. . . . . 6
|
| 68 | 67 | rspcev 3309 |
. . . . 5
|
| 69 | 37, 62, 68 | syl2anc 693 |
. . . 4
|
| 70 | 69 | ex 450 |
. . 3
|
| 71 | 36, 70 | impbid 202 |
. 2
|
| 72 | 14, 71 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |