MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcogw Structured version   Visualization version   Unicode version

Theorem brcogw 5290
Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
brcogw  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  A ( C  o.  D ) B )

Proof of Theorem brcogw
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 3simpa 1058 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z )  ->  ( A  e.  V  /\  B  e.  W
) )
2 breq2 4657 . . . . . 6  |-  ( x  =  X  ->  ( A D x  <->  A D X ) )
3 breq1 4656 . . . . . 6  |-  ( x  =  X  ->  (
x C B  <->  X C B ) )
42, 3anbi12d 747 . . . . 5  |-  ( x  =  X  ->  (
( A D x  /\  x C B )  <->  ( A D X  /\  X C B ) ) )
54spcegv 3294 . . . 4  |-  ( X  e.  Z  ->  (
( A D X  /\  X C B )  ->  E. x
( A D x  /\  x C B ) ) )
65imp 445 . . 3  |-  ( ( X  e.  Z  /\  ( A D X  /\  X C B ) )  ->  E. x ( A D x  /\  x C B ) )
763ad2antl3 1225 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  E. x ( A D x  /\  x C B ) )
8 brcog 5288 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
98biimpar 502 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  E. x
( A D x  /\  x C B ) )  ->  A
( C  o.  D
) B )
101, 7, 9syl2an2r 876 1  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  A ( C  o.  D ) B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   class class class wbr 4653    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-co 5123
This theorem is referenced by:  utop2nei  22054  utop3cls  22055  iunrelexpuztr  38011  frege96d  38041  frege98d  38045
  Copyright terms: Public domain W3C validator