| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcolinear2 | Structured version Visualization version Unicode version | ||
| Description: Alternate colinearity binary relation. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brcolinear2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | colinrel 32164 |
. . . 4
| |
| 2 | 1 | brrelexi 5158 |
. . 3
|
| 3 | 2 | a1i 11 |
. 2
|
| 4 | elex 3212 |
. . . . . 6
| |
| 5 | 4 | 3ad2ant1 1082 |
. . . . 5
|
| 6 | 5 | adantr 481 |
. . . 4
|
| 7 | 6 | rexlimivw 3029 |
. . 3
|
| 8 | 7 | a1i 11 |
. 2
|
| 9 | df-br 4654 |
. . . . . 6
| |
| 10 | df-colinear 32146 |
. . . . . . 7
| |
| 11 | 10 | eleq2i 2693 |
. . . . . 6
|
| 12 | 9, 11 | bitri 264 |
. . . . 5
|
| 13 | opex 4932 |
. . . . . . 7
| |
| 14 | opelcnvg 5302 |
. . . . . . 7
| |
| 15 | 13, 14 | mpan2 707 |
. . . . . 6
|
| 16 | 15 | 3ad2ant3 1084 |
. . . . 5
|
| 17 | 12, 16 | syl5bb 272 |
. . . 4
|
| 18 | eleq1 2689 |
. . . . . . . 8
| |
| 19 | 18 | 3anbi2d 1404 |
. . . . . . 7
|
| 20 | opeq1 4402 |
. . . . . . . . 9
| |
| 21 | 20 | breq2d 4665 |
. . . . . . . 8
|
| 22 | breq1 4656 |
. . . . . . . 8
| |
| 23 | opeq2 4403 |
. . . . . . . . 9
| |
| 24 | 23 | breq2d 4665 |
. . . . . . . 8
|
| 25 | 21, 22, 24 | 3orbi123d 1398 |
. . . . . . 7
|
| 26 | 19, 25 | anbi12d 747 |
. . . . . 6
|
| 27 | 26 | rexbidv 3052 |
. . . . 5
|
| 28 | eleq1 2689 |
. . . . . . . 8
| |
| 29 | 28 | 3anbi3d 1405 |
. . . . . . 7
|
| 30 | opeq2 4403 |
. . . . . . . . 9
| |
| 31 | 30 | breq2d 4665 |
. . . . . . . 8
|
| 32 | opeq1 4402 |
. . . . . . . . 9
| |
| 33 | 32 | breq2d 4665 |
. . . . . . . 8
|
| 34 | breq1 4656 |
. . . . . . . 8
| |
| 35 | 31, 33, 34 | 3orbi123d 1398 |
. . . . . . 7
|
| 36 | 29, 35 | anbi12d 747 |
. . . . . 6
|
| 37 | 36 | rexbidv 3052 |
. . . . 5
|
| 38 | eleq1 2689 |
. . . . . . . 8
| |
| 39 | 38 | 3anbi1d 1403 |
. . . . . . 7
|
| 40 | breq1 4656 |
. . . . . . . 8
| |
| 41 | opeq2 4403 |
. . . . . . . . 9
| |
| 42 | 41 | breq2d 4665 |
. . . . . . . 8
|
| 43 | opeq1 4402 |
. . . . . . . . 9
| |
| 44 | 43 | breq2d 4665 |
. . . . . . . 8
|
| 45 | 40, 42, 44 | 3orbi123d 1398 |
. . . . . . 7
|
| 46 | 39, 45 | anbi12d 747 |
. . . . . 6
|
| 47 | 46 | rexbidv 3052 |
. . . . 5
|
| 48 | 27, 37, 47 | eloprabg 6748 |
. . . 4
|
| 49 | 17, 48 | bitrd 268 |
. . 3
|
| 50 | 49 | 3expia 1267 |
. 2
|
| 51 | 3, 8, 50 | pm5.21ndd 369 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-oprab 6654 df-colinear 32146 |
| This theorem is referenced by: brcolinear 32166 |
| Copyright terms: Public domain | W3C validator |