Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcolinear2 Structured version   Visualization version   Unicode version

Theorem brcolinear2 32165
Description: Alternate colinearity binary relation. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
brcolinear2  |-  ( ( Q  e.  V  /\  R  e.  W )  ->  ( P  Colinear  <. Q ,  R >. 
<->  E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n ) )  /\  ( P 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  P >.  \/  R  Btwn  <. P ,  Q >. ) ) ) )
Distinct variable groups:    P, n    Q, n    R, n
Allowed substitution hints:    V( n)    W( n)

Proof of Theorem brcolinear2
Dummy variables  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 colinrel 32164 . . . 4  |-  Rel  Colinear
21brrelexi 5158 . . 3  |-  ( P 
Colinear 
<. Q ,  R >.  ->  P  e.  _V )
32a1i 11 . 2  |-  ( ( Q  e.  V  /\  R  e.  W )  ->  ( P  Colinear  <. Q ,  R >.  ->  P  e.  _V ) )
4 elex 3212 . . . . . 6  |-  ( P  e.  ( EE `  n )  ->  P  e.  _V )
543ad2ant1 1082 . . . . 5  |-  ( ( P  e.  ( EE
`  n )  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n
) )  ->  P  e.  _V )
65adantr 481 . . . 4  |-  ( ( ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n ) )  /\  ( P 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  P >.  \/  R  Btwn  <. P ,  Q >. ) )  ->  P  e.  _V )
76rexlimivw 3029 . . 3  |-  ( E. n  e.  NN  (
( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n ) )  /\  ( P 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  P >.  \/  R  Btwn  <. P ,  Q >. ) )  ->  P  e.  _V )
87a1i 11 . 2  |-  ( ( Q  e.  V  /\  R  e.  W )  ->  ( E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
)  /\  R  e.  ( EE `  n ) )  /\  ( P 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  P >.  \/  R  Btwn  <. P ,  Q >. ) )  ->  P  e.  _V ) )
9 df-br 4654 . . . . . 6  |-  ( P 
Colinear 
<. Q ,  R >.  <->  <. P ,  <. Q ,  R >. >.  e.  Colinear  )
10 df-colinear 32146 . . . . . . 7  |-  Colinear  =  `' { <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) }
1110eleq2i 2693 . . . . . 6  |-  ( <. P ,  <. Q ,  R >. >.  e.  Colinear  <->  <. P ,  <. Q ,  R >. >.  e.  `' { <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) } )
129, 11bitri 264 . . . . 5  |-  ( P 
Colinear 
<. Q ,  R >.  <->  <. P ,  <. Q ,  R >. >.  e.  `' { <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) } )
13 opex 4932 . . . . . . 7  |-  <. Q ,  R >.  e.  _V
14 opelcnvg 5302 . . . . . . 7  |-  ( ( P  e.  _V  /\  <. Q ,  R >.  e. 
_V )  ->  ( <. P ,  <. Q ,  R >. >.  e.  `' { <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) }  <->  <. <. Q ,  R >. ,  P >.  e. 
{ <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) } ) )
1513, 14mpan2 707 . . . . . 6  |-  ( P  e.  _V  ->  ( <. P ,  <. Q ,  R >. >.  e.  `' { <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) }  <->  <. <. Q ,  R >. ,  P >.  e. 
{ <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) } ) )
16153ad2ant3 1084 . . . . 5  |-  ( ( Q  e.  V  /\  R  e.  W  /\  P  e.  _V )  ->  ( <. P ,  <. Q ,  R >. >.  e.  `' { <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) }  <->  <. <. Q ,  R >. ,  P >.  e. 
{ <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) } ) )
1712, 16syl5bb 272 . . . 4  |-  ( ( Q  e.  V  /\  R  e.  W  /\  P  e.  _V )  ->  ( P  Colinear  <. Q ,  R >. 
<-> 
<. <. Q ,  R >. ,  P >.  e.  { <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) } ) )
18 eleq1 2689 . . . . . . . 8  |-  ( q  =  Q  ->  (
q  e.  ( EE
`  n )  <->  Q  e.  ( EE `  n ) ) )
19183anbi2d 1404 . . . . . . 7  |-  ( q  =  Q  ->  (
( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  <->  ( p  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) ) ) )
20 opeq1 4402 . . . . . . . . 9  |-  ( q  =  Q  ->  <. q ,  r >.  =  <. Q ,  r >. )
2120breq2d 4665 . . . . . . . 8  |-  ( q  =  Q  ->  (
p  Btwn  <. q ,  r >.  <->  p  Btwn  <. Q , 
r >. ) )
22 breq1 4656 . . . . . . . 8  |-  ( q  =  Q  ->  (
q  Btwn  <. r ,  p >.  <->  Q  Btwn  <. r ,  p >. ) )
23 opeq2 4403 . . . . . . . . 9  |-  ( q  =  Q  ->  <. p ,  q >.  =  <. p ,  Q >. )
2423breq2d 4665 . . . . . . . 8  |-  ( q  =  Q  ->  (
r  Btwn  <. p ,  q >.  <->  r  Btwn  <. p ,  Q >. ) )
2521, 22, 243orbi123d 1398 . . . . . . 7  |-  ( q  =  Q  ->  (
( p  Btwn  <. q ,  r >.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q >. )  <->  ( p  Btwn  <. Q , 
r >.  \/  Q  Btwn  <.
r ,  p >.  \/  r  Btwn  <. p ,  Q >. ) ) )
2619, 25anbi12d 747 . . . . . 6  |-  ( q  =  Q  ->  (
( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) )  <->  ( (
p  e.  ( EE
`  n )  /\  Q  e.  ( EE `  n )  /\  r  e.  ( EE `  n
) )  /\  (
p  Btwn  <. Q , 
r >.  \/  Q  Btwn  <.
r ,  p >.  \/  r  Btwn  <. p ,  Q >. ) ) ) )
2726rexbidv 3052 . . . . 5  |-  ( q  =  Q  ->  ( E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) )  <->  E. n  e.  NN  ( ( p  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
)  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. Q ,  r
>.  \/  Q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  Q >. ) ) ) )
28 eleq1 2689 . . . . . . . 8  |-  ( r  =  R  ->  (
r  e.  ( EE
`  n )  <->  R  e.  ( EE `  n ) ) )
29283anbi3d 1405 . . . . . . 7  |-  ( r  =  R  ->  (
( p  e.  ( EE `  n )  /\  Q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  <->  ( p  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n ) ) ) )
30 opeq2 4403 . . . . . . . . 9  |-  ( r  =  R  ->  <. Q , 
r >.  =  <. Q ,  R >. )
3130breq2d 4665 . . . . . . . 8  |-  ( r  =  R  ->  (
p  Btwn  <. Q , 
r >. 
<->  p  Btwn  <. Q ,  R >. ) )
32 opeq1 4402 . . . . . . . . 9  |-  ( r  =  R  ->  <. r ,  p >.  =  <. R ,  p >. )
3332breq2d 4665 . . . . . . . 8  |-  ( r  =  R  ->  ( Q  Btwn  <. r ,  p >.  <-> 
Q  Btwn  <. R ,  p >. ) )
34 breq1 4656 . . . . . . . 8  |-  ( r  =  R  ->  (
r  Btwn  <. p ,  Q >.  <->  R  Btwn  <. p ,  Q >. ) )
3531, 33, 343orbi123d 1398 . . . . . . 7  |-  ( r  =  R  ->  (
( p  Btwn  <. Q , 
r >.  \/  Q  Btwn  <.
r ,  p >.  \/  r  Btwn  <. p ,  Q >. )  <->  ( p  Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  p >.  \/  R  Btwn  <.
p ,  Q >. ) ) )
3629, 35anbi12d 747 . . . . . 6  |-  ( r  =  R  ->  (
( ( p  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. Q ,  r
>.  \/  Q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  Q >. ) )  <->  ( (
p  e.  ( EE
`  n )  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n
) )  /\  (
p  Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  p >.  \/  R  Btwn  <. p ,  Q >. ) ) ) )
3736rexbidv 3052 . . . . 5  |-  ( r  =  R  ->  ( E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. Q ,  r
>.  \/  Q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  Q >. ) )  <->  E. n  e.  NN  ( ( p  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
)  /\  R  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  p >.  \/  R  Btwn  <.
p ,  Q >. ) ) ) )
38 eleq1 2689 . . . . . . . 8  |-  ( p  =  P  ->  (
p  e.  ( EE
`  n )  <->  P  e.  ( EE `  n ) ) )
39383anbi1d 1403 . . . . . . 7  |-  ( p  =  P  ->  (
( p  e.  ( EE `  n )  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n ) )  <->  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n ) ) ) )
40 breq1 4656 . . . . . . . 8  |-  ( p  =  P  ->  (
p  Btwn  <. Q ,  R >. 
<->  P  Btwn  <. Q ,  R >. ) )
41 opeq2 4403 . . . . . . . . 9  |-  ( p  =  P  ->  <. R ,  p >.  =  <. R ,  P >. )
4241breq2d 4665 . . . . . . . 8  |-  ( p  =  P  ->  ( Q  Btwn  <. R ,  p >.  <-> 
Q  Btwn  <. R ,  P >. ) )
43 opeq1 4402 . . . . . . . . 9  |-  ( p  =  P  ->  <. p ,  Q >.  =  <. P ,  Q >. )
4443breq2d 4665 . . . . . . . 8  |-  ( p  =  P  ->  ( R  Btwn  <. p ,  Q >.  <-> 
R  Btwn  <. P ,  Q >. ) )
4540, 42, 443orbi123d 1398 . . . . . . 7  |-  ( p  =  P  ->  (
( p  Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  p >.  \/  R  Btwn  <. p ,  Q >. )  <->  ( P  Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  P >.  \/  R  Btwn  <. P ,  Q >. ) ) )
4639, 45anbi12d 747 . . . . . 6  |-  ( p  =  P  ->  (
( ( p  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  p >.  \/  R  Btwn  <.
p ,  Q >. ) )  <->  ( ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
)  /\  R  e.  ( EE `  n ) )  /\  ( P 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  P >.  \/  R  Btwn  <. P ,  Q >. ) ) ) )
4746rexbidv 3052 . . . . 5  |-  ( p  =  P  ->  ( E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  p >.  \/  R  Btwn  <.
p ,  Q >. ) )  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n ) )  /\  ( P 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  P >.  \/  R  Btwn  <. P ,  Q >. ) ) ) )
4827, 37, 47eloprabg 6748 . . . 4  |-  ( ( Q  e.  V  /\  R  e.  W  /\  P  e.  _V )  ->  ( <. <. Q ,  R >. ,  P >.  e.  { <. <. q ,  r
>. ,  p >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  r  e.  ( EE `  n ) )  /\  ( p 
Btwn  <. q ,  r
>.  \/  q  Btwn  <. r ,  p >.  \/  r  Btwn  <. p ,  q
>. ) ) }  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
)  /\  R  e.  ( EE `  n ) )  /\  ( P 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  P >.  \/  R  Btwn  <. P ,  Q >. ) ) ) )
4917, 48bitrd 268 . . 3  |-  ( ( Q  e.  V  /\  R  e.  W  /\  P  e.  _V )  ->  ( P  Colinear  <. Q ,  R >. 
<->  E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n ) )  /\  ( P 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  P >.  \/  R  Btwn  <. P ,  Q >. ) ) ) )
50493expia 1267 . 2  |-  ( ( Q  e.  V  /\  R  e.  W )  ->  ( P  e.  _V  ->  ( P  Colinear  <. Q ,  R >. 
<->  E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n ) )  /\  ( P 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  P >.  \/  R  Btwn  <. P ,  Q >. ) ) ) ) )
513, 8, 50pm5.21ndd 369 1  |-  ( ( Q  e.  V  /\  R  e.  W )  ->  ( P  Colinear  <. Q ,  R >. 
<->  E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n )  /\  R  e.  ( EE `  n ) )  /\  ( P 
Btwn  <. Q ,  R >.  \/  Q  Btwn  <. R ,  P >.  \/  R  Btwn  <. P ,  Q >. ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   <.cop 4183   class class class wbr 4653   `'ccnv 5113   ` cfv 5888   {coprab 6651   NNcn 11020   EEcee 25768    Btwn cbtwn 25769    Colinear ccolin 32144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-oprab 6654  df-colinear 32146
This theorem is referenced by:  brcolinear  32166
  Copyright terms: Public domain W3C validator