MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcnvg Structured version   Visualization version   Unicode version

Theorem opelcnvg 5302
Description: Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
opelcnvg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )

Proof of Theorem opelcnvg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . 3  |-  ( x  =  A  ->  (
y R x  <->  y R A ) )
2 breq1 4656 . . 3  |-  ( y  =  B  ->  (
y R A  <->  B R A ) )
3 df-cnv 5122 . . 3  |-  `' R  =  { <. x ,  y
>.  |  y R x }
41, 2, 3brabg 4994 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )
5 df-br 4654 . 2  |-  ( A `' R B  <->  <. A ,  B >.  e.  `' R
)
6 df-br 4654 . 2  |-  ( B R A  <->  <. B ,  A >.  e.  R )
74, 5, 63bitr3g 302 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   <.cop 4183   class class class wbr 4653   `'ccnv 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cnv 5122
This theorem is referenced by:  brcnvg  5303  opelcnv  5304  elpredim  5692  fvimacnv  6332  brtpos  7361  xrlenlt  10103  brcolinear2  32165
  Copyright terms: Public domain W3C validator