MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brovpreldm Structured version   Visualization version   Unicode version

Theorem brovpreldm 7254
Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.)
Assertion
Ref Expression
brovpreldm  |-  ( D ( B A C ) E  ->  <. B ,  C >.  e.  dom  A
)

Proof of Theorem brovpreldm
StepHypRef Expression
1 df-br 4654 . 2  |-  ( D ( B A C ) E  <->  <. D ,  E >.  e.  ( B A C ) )
2 ne0i 3921 . . 3  |-  ( <. D ,  E >.  e.  ( B A C )  ->  ( B A C )  =/=  (/) )
3 df-ov 6653 . . . . 5  |-  ( B A C )  =  ( A `  <. B ,  C >. )
4 ndmfv 6218 . . . . 5  |-  ( -. 
<. B ,  C >.  e. 
dom  A  ->  ( A `
 <. B ,  C >. )  =  (/) )
53, 4syl5eq 2668 . . . 4  |-  ( -. 
<. B ,  C >.  e. 
dom  A  ->  ( B A C )  =  (/) )
65necon1ai 2821 . . 3  |-  ( ( B A C )  =/=  (/)  ->  <. B ,  C >.  e.  dom  A
)
72, 6syl 17 . 2  |-  ( <. D ,  E >.  e.  ( B A C )  ->  <. B ,  C >.  e.  dom  A
)
81, 7sylbi 207 1  |-  ( D ( B A C ) E  ->  <. B ,  C >.  e.  dom  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1990    =/= wne 2794   (/)c0 3915   <.cop 4183   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  bropopvvv  7255  bropfvvvv  7257
  Copyright terms: Public domain W3C validator