MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offval22 Structured version   Visualization version   Unicode version

Theorem offval22 7253
Description: The function operation expressed as a mapping, variation of offval2 6914. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
offval22.a  |-  ( ph  ->  A  e.  V )
offval22.b  |-  ( ph  ->  B  e.  W )
offval22.c  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  C  e.  X )
offval22.d  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  D  e.  Y )
offval22.f  |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  C ) )
offval22.g  |-  ( ph  ->  G  =  ( x  e.  A ,  y  e.  B  |->  D ) )
Assertion
Ref Expression
offval22  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A ,  y  e.  B  |->  ( C R D ) ) )
Distinct variable groups:    ph, x, y   
x, A, y    x, B, y    x, R, y
Allowed substitution hints:    C( x, y)    D( x, y)    F( x, y)    G( x, y)    V( x, y)    W( x, y)    X( x, y)    Y( x, y)

Proof of Theorem offval22
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 offval22.a . . . 4  |-  ( ph  ->  A  e.  V )
2 offval22.b . . . 4  |-  ( ph  ->  B  e.  W )
3 xpexg 6960 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )
41, 2, 3syl2anc 693 . . 3  |-  ( ph  ->  ( A  X.  B
)  e.  _V )
5 xp1st 7198 . . . . 5  |-  ( z  e.  ( A  X.  B )  ->  ( 1st `  z )  e.  A )
6 xp2nd 7199 . . . . 5  |-  ( z  e.  ( A  X.  B )  ->  ( 2nd `  z )  e.  B )
75, 6jca 554 . . . 4  |-  ( z  e.  ( A  X.  B )  ->  (
( 1st `  z
)  e.  A  /\  ( 2nd `  z )  e.  B ) )
8 fvex 6201 . . . . . 6  |-  ( 2nd `  z )  e.  _V
9 fvex 6201 . . . . . 6  |-  ( 1st `  z )  e.  _V
10 nfcv 2764 . . . . . . 7  |-  F/_ y
( 2nd `  z
)
11 nfcv 2764 . . . . . . 7  |-  F/_ x
( 2nd `  z
)
12 nfcv 2764 . . . . . . 7  |-  F/_ x
( 1st `  z
)
13 nfv 1843 . . . . . . . 8  |-  F/ y ( ph  /\  x  e.  A  /\  ( 2nd `  z )  e.  B )
14 nfcsb1v 3549 . . . . . . . . 9  |-  F/_ y [_ ( 2nd `  z
)  /  y ]_ C
1514nfel1 2779 . . . . . . . 8  |-  F/ y
[_ ( 2nd `  z
)  /  y ]_ C  e.  _V
1613, 15nfim 1825 . . . . . . 7  |-  F/ y ( ( ph  /\  x  e.  A  /\  ( 2nd `  z )  e.  B )  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
17 nfv 1843 . . . . . . . 8  |-  F/ x
( ph  /\  ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B
)
18 nfcsb1v 3549 . . . . . . . . 9  |-  F/_ x [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C
1918nfel1 2779 . . . . . . . 8  |-  F/ x [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V
2017, 19nfim 1825 . . . . . . 7  |-  F/ x
( ( ph  /\  ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B )  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V )
21 eleq1 2689 . . . . . . . . 9  |-  ( y  =  ( 2nd `  z
)  ->  ( y  e.  B  <->  ( 2nd `  z
)  e.  B ) )
22213anbi3d 1405 . . . . . . . 8  |-  ( y  =  ( 2nd `  z
)  ->  ( ( ph  /\  x  e.  A  /\  y  e.  B
)  <->  ( ph  /\  x  e.  A  /\  ( 2nd `  z )  e.  B ) ) )
23 csbeq1a 3542 . . . . . . . . 9  |-  ( y  =  ( 2nd `  z
)  ->  C  =  [_ ( 2nd `  z
)  /  y ]_ C )
2423eleq1d 2686 . . . . . . . 8  |-  ( y  =  ( 2nd `  z
)  ->  ( C  e.  _V  <->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
2522, 24imbi12d 334 . . . . . . 7  |-  ( y  =  ( 2nd `  z
)  ->  ( (
( ph  /\  x  e.  A  /\  y  e.  B )  ->  C  e.  _V )  <->  ( ( ph  /\  x  e.  A  /\  ( 2nd `  z
)  e.  B )  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
) )
26 eleq1 2689 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  ( x  e.  A  <->  ( 1st `  z
)  e.  A ) )
27263anbi2d 1404 . . . . . . . 8  |-  ( x  =  ( 1st `  z
)  ->  ( ( ph  /\  x  e.  A  /\  ( 2nd `  z
)  e.  B )  <-> 
( ph  /\  ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B
) ) )
28 csbeq1a 3542 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  [_ ( 2nd `  z )  /  y ]_ C  =  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
2928eleq1d 2686 . . . . . . . 8  |-  ( x  =  ( 1st `  z
)  ->  ( [_ ( 2nd `  z )  /  y ]_ C  e.  _V  <->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
3027, 29imbi12d 334 . . . . . . 7  |-  ( x  =  ( 1st `  z
)  ->  ( (
( ph  /\  x  e.  A  /\  ( 2nd `  z )  e.  B )  ->  [_ ( 2nd `  z )  / 
y ]_ C  e.  _V ) 
<->  ( ( ph  /\  ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B )  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V ) ) )
31 offval22.c . . . . . . . 8  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  C  e.  X )
32 elex 3212 . . . . . . . 8  |-  ( C  e.  X  ->  C  e.  _V )
3331, 32syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  C  e.  _V )
3410, 11, 12, 16, 20, 25, 30, 33vtocl2gf 3268 . . . . . 6  |-  ( ( ( 2nd `  z
)  e.  _V  /\  ( 1st `  z )  e.  _V )  -> 
( ( ph  /\  ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B )  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V ) )
358, 9, 34mp2an 708 . . . . 5  |-  ( (
ph  /\  ( 1st `  z )  e.  A  /\  ( 2nd `  z
)  e.  B )  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
36353expb 1266 . . . 4  |-  ( (
ph  /\  ( ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B
) )  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V )
377, 36sylan2 491 . . 3  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V )
38 nfcsb1v 3549 . . . . . . . . 9  |-  F/_ y [_ ( 2nd `  z
)  /  y ]_ D
3938nfel1 2779 . . . . . . . 8  |-  F/ y
[_ ( 2nd `  z
)  /  y ]_ D  e.  _V
4013, 39nfim 1825 . . . . . . 7  |-  F/ y ( ( ph  /\  x  e.  A  /\  ( 2nd `  z )  e.  B )  ->  [_ ( 2nd `  z
)  /  y ]_ D  e.  _V )
41 nfcsb1v 3549 . . . . . . . . 9  |-  F/_ x [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ D
4241nfel1 2779 . . . . . . . 8  |-  F/ x [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ D  e.  _V
4317, 42nfim 1825 . . . . . . 7  |-  F/ x
( ( ph  /\  ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B )  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ D  e.  _V )
44 csbeq1a 3542 . . . . . . . . 9  |-  ( y  =  ( 2nd `  z
)  ->  D  =  [_ ( 2nd `  z
)  /  y ]_ D )
4544eleq1d 2686 . . . . . . . 8  |-  ( y  =  ( 2nd `  z
)  ->  ( D  e.  _V  <->  [_ ( 2nd `  z
)  /  y ]_ D  e.  _V )
)
4622, 45imbi12d 334 . . . . . . 7  |-  ( y  =  ( 2nd `  z
)  ->  ( (
( ph  /\  x  e.  A  /\  y  e.  B )  ->  D  e.  _V )  <->  ( ( ph  /\  x  e.  A  /\  ( 2nd `  z
)  e.  B )  ->  [_ ( 2nd `  z
)  /  y ]_ D  e.  _V )
) )
47 csbeq1a 3542 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  [_ ( 2nd `  z )  /  y ]_ D  =  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ D )
4847eleq1d 2686 . . . . . . . 8  |-  ( x  =  ( 1st `  z
)  ->  ( [_ ( 2nd `  z )  /  y ]_ D  e.  _V  <->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ D  e.  _V )
)
4927, 48imbi12d 334 . . . . . . 7  |-  ( x  =  ( 1st `  z
)  ->  ( (
( ph  /\  x  e.  A  /\  ( 2nd `  z )  e.  B )  ->  [_ ( 2nd `  z )  / 
y ]_ D  e.  _V ) 
<->  ( ( ph  /\  ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B )  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ D  e.  _V ) ) )
50 offval22.d . . . . . . . 8  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  D  e.  Y )
51 elex 3212 . . . . . . . 8  |-  ( D  e.  Y  ->  D  e.  _V )
5250, 51syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  D  e.  _V )
5310, 11, 12, 40, 43, 46, 49, 52vtocl2gf 3268 . . . . . 6  |-  ( ( ( 2nd `  z
)  e.  _V  /\  ( 1st `  z )  e.  _V )  -> 
( ( ph  /\  ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B )  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ D  e.  _V ) )
548, 9, 53mp2an 708 . . . . 5  |-  ( (
ph  /\  ( 1st `  z )  e.  A  /\  ( 2nd `  z
)  e.  B )  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ D  e.  _V )
55543expb 1266 . . . 4  |-  ( (
ph  /\  ( ( 1st `  z )  e.  A  /\  ( 2nd `  z )  e.  B
) )  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ D  e.  _V )
567, 55sylan2 491 . . 3  |-  ( (
ph  /\  z  e.  ( A  X.  B
) )  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ D  e.  _V )
57 offval22.f . . . 4  |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  C ) )
58 mpt2mpts 7234 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  ( A  X.  B
)  |->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C )
5957, 58syl6eq 2672 . . 3  |-  ( ph  ->  F  =  ( z  e.  ( A  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C ) )
60 offval22.g . . . 4  |-  ( ph  ->  G  =  ( x  e.  A ,  y  e.  B  |->  D ) )
61 mpt2mpts 7234 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  D )  =  ( z  e.  ( A  X.  B
)  |->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ D )
6260, 61syl6eq 2672 . . 3  |-  ( ph  ->  G  =  ( z  e.  ( A  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ D ) )
634, 37, 56, 59, 62offval2 6914 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( z  e.  ( A  X.  B ) 
|->  ( [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C R [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ D ) ) )
64 csbov12g 6689 . . . . . . 7  |-  ( ( 2nd `  z )  e.  _V  ->  [_ ( 2nd `  z )  / 
y ]_ ( C R D )  =  (
[_ ( 2nd `  z
)  /  y ]_ C R [_ ( 2nd `  z )  /  y ]_ D ) )
6564csbeq2dv 3992 . . . . . 6  |-  ( ( 2nd `  z )  e.  _V  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ ( C R D )  =  [_ ( 1st `  z )  /  x ]_ ( [_ ( 2nd `  z )  / 
y ]_ C R [_ ( 2nd `  z )  /  y ]_ D
) )
668, 65ax-mp 5 . . . . 5  |-  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ ( C R D )  =  [_ ( 1st `  z )  /  x ]_ ( [_ ( 2nd `  z )  / 
y ]_ C R [_ ( 2nd `  z )  /  y ]_ D
)
67 csbov12g 6689 . . . . . 6  |-  ( ( 1st `  z )  e.  _V  ->  [_ ( 1st `  z )  /  x ]_ ( [_ ( 2nd `  z )  / 
y ]_ C R [_ ( 2nd `  z )  /  y ]_ D
)  =  ( [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C R [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ D ) )
689, 67ax-mp 5 . . . . 5  |-  [_ ( 1st `  z )  /  x ]_ ( [_ ( 2nd `  z )  / 
y ]_ C R [_ ( 2nd `  z )  /  y ]_ D
)  =  ( [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C R [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ D )
6966, 68eqtr2i 2645 . . . 4  |-  ( [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C R [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ D )  = 
[_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ ( C R D )
7069mpteq2i 4741 . . 3  |-  ( z  e.  ( A  X.  B )  |->  ( [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C R [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ D ) )  =  ( z  e.  ( A  X.  B
)  |->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ ( C R D ) )
71 mpt2mpts 7234 . . 3  |-  ( x  e.  A ,  y  e.  B  |->  ( C R D ) )  =  ( z  e.  ( A  X.  B
)  |->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ ( C R D ) )
7270, 71eqtr4i 2647 . 2  |-  ( z  e.  ( A  X.  B )  |->  ( [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C R [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ D ) )  =  ( x  e.  A ,  y  e.  B  |->  ( C R D ) )
7363, 72syl6eq 2672 1  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A ,  y  e.  B  |->  ( C R D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533    |-> cmpt 4729    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-1st 7168  df-2nd 7169
This theorem is referenced by:  matsc  20256  mdetrsca2  20410  mdetrlin2  20413  mdetunilem5  20422  smadiadetglem2  20478  mat2pmatghm  20535  pm2mpghm  20621
  Copyright terms: Public domain W3C validator