| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bropfvvvv | Structured version Visualization version Unicode version | ||
| Description: If a binary relation holds for the result of an operation which is a function value, the involved classes are sets. (Contributed by AV, 31-Dec-2020.) (Revised by AV, 16-Jan-2021.) |
| Ref | Expression |
|---|---|
| bropfvvvv.o |
|
| bropfvvvv.oo |
|
| bropfvvvv.s |
|
| bropfvvvv.t |
|
| bropfvvvv.p |
|
| Ref | Expression |
|---|---|
| bropfvvvv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brovpreldm 7254 |
. 2
| |
| 2 | bropfvvvv.o |
. . . . . . . . . 10
| |
| 3 | 2 | a1i 11 |
. . . . . . . . 9
|
| 4 | bropfvvvv.s |
. . . . . . . . . . 11
| |
| 5 | bropfvvvv.t |
. . . . . . . . . . 11
| |
| 6 | bropfvvvv.p |
. . . . . . . . . . . 12
| |
| 7 | 6 | opabbidv 4716 |
. . . . . . . . . . 11
|
| 8 | 4, 5, 7 | mpt2eq123dv 6717 |
. . . . . . . . . 10
|
| 9 | 8 | adantl 482 |
. . . . . . . . 9
|
| 10 | simpl 473 |
. . . . . . . . 9
| |
| 11 | simpr 477 |
. . . . . . . . 9
| |
| 12 | 3, 9, 10, 11 | fvmptd 6288 |
. . . . . . . 8
|
| 13 | 12 | dmeqd 5326 |
. . . . . . 7
|
| 14 | 13 | eleq2d 2687 |
. . . . . 6
|
| 15 | dmoprabss 6742 |
. . . . . . . . 9
| |
| 16 | 15 | sseli 3599 |
. . . . . . . 8
|
| 17 | bropfvvvv.oo |
. . . . . . . . . 10
| |
| 18 | 2, 17 | bropfvvvvlem 7256 |
. . . . . . . . 9
|
| 19 | 18 | ex 450 |
. . . . . . . 8
|
| 20 | 16, 19 | syl 17 |
. . . . . . 7
|
| 21 | df-mpt2 6655 |
. . . . . . . 8
| |
| 22 | 21 | dmeqi 5325 |
. . . . . . 7
|
| 23 | 20, 22 | eleq2s 2719 |
. . . . . 6
|
| 24 | 14, 23 | syl6bi 243 |
. . . . 5
|
| 25 | 24 | com23 86 |
. . . 4
|
| 26 | 25 | a1d 25 |
. . 3
|
| 27 | ianor 509 |
. . . . 5
| |
| 28 | 2 | fvmptndm 6308 |
. . . . . . . . . . 11
|
| 29 | 28 | dmeqd 5326 |
. . . . . . . . . 10
|
| 30 | 29 | eleq2d 2687 |
. . . . . . . . 9
|
| 31 | dm0 5339 |
. . . . . . . . . 10
| |
| 32 | 31 | eleq2i 2693 |
. . . . . . . . 9
|
| 33 | 30, 32 | syl6bb 276 |
. . . . . . . 8
|
| 34 | noel 3919 |
. . . . . . . . 9
| |
| 35 | 34 | pm2.21i 116 |
. . . . . . . 8
|
| 36 | 33, 35 | syl6bi 243 |
. . . . . . 7
|
| 37 | 36 | a1d 25 |
. . . . . 6
|
| 38 | notnotb 304 |
. . . . . . . 8
| |
| 39 | elex 3212 |
. . . . . . . . . . . . . 14
| |
| 40 | elex 3212 |
. . . . . . . . . . . . . 14
| |
| 41 | 39, 40 | anim12i 590 |
. . . . . . . . . . . . 13
|
| 42 | 41 | adantl 482 |
. . . . . . . . . . . 12
|
| 43 | mpt2exga 7246 |
. . . . . . . . . . . 12
| |
| 44 | 42, 43 | syl 17 |
. . . . . . . . . . 11
|
| 45 | 44 | pm2.24d 147 |
. . . . . . . . . 10
|
| 46 | 45 | ex 450 |
. . . . . . . . 9
|
| 47 | 46 | com23 86 |
. . . . . . . 8
|
| 48 | 38, 47 | sylbir 225 |
. . . . . . 7
|
| 49 | 48 | imp 445 |
. . . . . 6
|
| 50 | 37, 49 | jaoi3 1011 |
. . . . 5
|
| 51 | 27, 50 | sylbi 207 |
. . . 4
|
| 52 | 51 | com34 91 |
. . 3
|
| 53 | 26, 52 | pm2.61i 176 |
. 2
|
| 54 | 1, 53 | mpdi 45 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: wlkonprop 26554 wksonproplem 26601 |
| Copyright terms: Public domain | W3C validator |