MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsymdif Structured version   Visualization version   Unicode version

Theorem brsymdif 4711
Description: Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
brsymdif  |-  ( A ( R  /_\  S ) B  <->  -.  ( A R B  <->  A S B ) )

Proof of Theorem brsymdif
StepHypRef Expression
1 df-br 4654 . 2  |-  ( A ( R  /_\  S ) B  <->  <. A ,  B >.  e.  ( R  /_\  S ) )
2 elsymdif 3849 . . 3  |-  ( <. A ,  B >.  e.  ( R  /_\  S )  <->  -.  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  S ) )
3 df-br 4654 . . . 4  |-  ( A R B  <->  <. A ,  B >.  e.  R )
4 df-br 4654 . . . 4  |-  ( A S B  <->  <. A ,  B >.  e.  S )
53, 4bibi12i 329 . . 3  |-  ( ( A R B  <->  A S B )  <->  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  S ) )
62, 5xchbinxr 325 . 2  |-  ( <. A ,  B >.  e.  ( R  /_\  S )  <->  -.  ( A R B  <-> 
A S B ) )
71, 6bitri 264 1  |-  ( A ( R  /_\  S ) B  <->  -.  ( A R B  <->  A S B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    e. wcel 1990    /_\ csymdif 3843   <.cop 4183   class class class wbr 4653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-symdif 3844  df-br 4654
This theorem is referenced by:  brtxpsd  32001
  Copyright terms: Public domain W3C validator