Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxpsd Structured version   Visualization version   Unicode version

Theorem brtxpsd 32001
Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brtxpsd.1  |-  A  e. 
_V
brtxpsd.2  |-  B  e. 
_V
Assertion
Ref Expression
brtxpsd  |-  ( -.  A ran  ( ( _V  (x)  _E  )  /_\  ( R  (x)  _V ) ) B  <->  A. x
( x  e.  B  <->  x R A ) )
Distinct variable groups:    x, A    x, B    x, R

Proof of Theorem brtxpsd
StepHypRef Expression
1 df-br 4654 . . 3  |-  ( A ran  ( ( _V 
(x)  _E  )  /_\  ( R 
(x)  _V ) ) B  <->  <. A ,  B >.  e. 
ran  ( ( _V 
(x)  _E  )  /_\  ( R 
(x)  _V ) ) )
2 opex 4932 . . . . 5  |-  <. A ,  B >.  e.  _V
32elrn 5366 . . . 4  |-  ( <. A ,  B >.  e. 
ran  ( ( _V 
(x)  _E  )  /_\  ( R 
(x)  _V ) )  <->  E. x  x ( ( _V 
(x)  _E  )  /_\  ( R 
(x)  _V ) ) <. A ,  B >. )
4 brsymdif 4711 . . . . . 6  |-  ( x ( ( _V  (x)  _E  )  /_\  ( R  (x)  _V ) ) <. A ,  B >. 
<->  -.  ( x ( _V  (x)  _E  ) <. A ,  B >.  <->  x
( R  (x)  _V ) <. A ,  B >. ) )
5 brv 4941 . . . . . . . . 9  |-  x _V A
6 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
7 brtxpsd.1 . . . . . . . . . 10  |-  A  e. 
_V
8 brtxpsd.2 . . . . . . . . . 10  |-  B  e. 
_V
96, 7, 8brtxp 31987 . . . . . . . . 9  |-  ( x ( _V  (x)  _E  ) <. A ,  B >.  <-> 
( x _V A  /\  x  _E  B
) )
105, 9mpbiran 953 . . . . . . . 8  |-  ( x ( _V  (x)  _E  ) <. A ,  B >.  <-> 
x  _E  B )
118epelc 5031 . . . . . . . 8  |-  ( x  _E  B  <->  x  e.  B )
1210, 11bitri 264 . . . . . . 7  |-  ( x ( _V  (x)  _E  ) <. A ,  B >.  <-> 
x  e.  B )
13 brv 4941 . . . . . . . 8  |-  x _V B
146, 7, 8brtxp 31987 . . . . . . . 8  |-  ( x ( R  (x)  _V ) <. A ,  B >.  <-> 
( x R A  /\  x _V B
) )
1513, 14mpbiran2 954 . . . . . . 7  |-  ( x ( R  (x)  _V ) <. A ,  B >.  <-> 
x R A )
1612, 15bibi12i 329 . . . . . 6  |-  ( ( x ( _V  (x)  _E  ) <. A ,  B >.  <-> 
x ( R  (x)  _V ) <. A ,  B >. )  <->  ( x  e.  B  <->  x R A ) )
174, 16xchbinx 324 . . . . 5  |-  ( x ( ( _V  (x)  _E  )  /_\  ( R  (x)  _V ) ) <. A ,  B >. 
<->  -.  ( x  e.  B  <->  x R A ) )
1817exbii 1774 . . . 4  |-  ( E. x  x ( ( _V  (x)  _E  )  /_\  ( R  (x)  _V ) ) <. A ,  B >. 
<->  E. x  -.  (
x  e.  B  <->  x R A ) )
193, 18bitri 264 . . 3  |-  ( <. A ,  B >.  e. 
ran  ( ( _V 
(x)  _E  )  /_\  ( R 
(x)  _V ) )  <->  E. x  -.  ( x  e.  B  <->  x R A ) )
20 exnal 1754 . . 3  |-  ( E. x  -.  ( x  e.  B  <->  x R A )  <->  -.  A. x
( x  e.  B  <->  x R A ) )
211, 19, 203bitrri 287 . 2  |-  ( -. 
A. x ( x  e.  B  <->  x R A )  <->  A ran  ( ( _V  (x)  _E  )  /_\  ( R  (x)  _V ) ) B )
2221con1bii 346 1  |-  ( -.  A ran  ( ( _V  (x)  _E  )  /_\  ( R  (x)  _V ) ) B  <->  A. x
( x  e.  B  <->  x R A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196   A.wal 1481   E.wex 1704    e. wcel 1990   _Vcvv 3200    /_\ csymdif 3843   <.cop 4183   class class class wbr 4653    _E cep 5028   ran crn 5115    (x) ctxp 31937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961
This theorem is referenced by:  brtxpsd2  32002
  Copyright terms: Public domain W3C validator