| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbr2g | Structured version Visualization version Unicode version | ||
| Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| Ref | Expression |
|---|---|
| sbcbr2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbr12g 4708 |
. 2
| |
| 2 | csbconstg 3546 |
. . 3
| |
| 3 | 2 | breq1d 4663 |
. 2
|
| 4 | 1, 3 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 |
| This theorem is referenced by: prmgaplem7 15761 telgsums 18390 fvmptnn04if 20654 bnj110 30928 frege124d 38053 frege72 38229 frege91 38248 frege116 38273 frege120 38277 |
| Copyright terms: Public domain | W3C validator |