Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgval Structured version   Visualization version   Unicode version

Theorem carsgval 30365
Description: Value of the Caratheodory sigma-Algebra construction function. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1  |-  ( ph  ->  O  e.  V )
carsgval.2  |-  ( ph  ->  M : ~P O --> ( 0 [,] +oo ) )
Assertion
Ref Expression
carsgval  |-  ( ph  ->  (toCaraSiga `  M )  =  { a  e.  ~P O  |  A. e  e.  ~P  O ( ( M `  ( e  i^i  a ) ) +e ( M `
 ( e  \ 
a ) ) )  =  ( M `  e ) } )
Distinct variable groups:    M, a,
e    O, a, e    ph, a,
e
Allowed substitution hints:    V( e, a)

Proof of Theorem carsgval
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 df-carsg 30364 . . 3  |- toCaraSiga  =  ( m  e.  _V  |->  { a  e.  ~P U. dom  m  |  A. e  e.  ~P  U. dom  m
( ( m `  ( e  i^i  a
) ) +e
( m `  (
e  \  a )
) )  =  ( m `  e ) } )
21a1i 11 . 2  |-  ( ph  -> toCaraSiga  =  ( m  e. 
_V  |->  { a  e. 
~P U. dom  m  | 
A. e  e.  ~P  U.
dom  m ( ( m `  ( e  i^i  a ) ) +e ( m `
 ( e  \ 
a ) ) )  =  ( m `  e ) } ) )
3 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  m  =  M )  ->  m  =  M )
43dmeqd 5326 . . . . . . 7  |-  ( (
ph  /\  m  =  M )  ->  dom  m  =  dom  M )
5 carsgval.2 . . . . . . . . 9  |-  ( ph  ->  M : ~P O --> ( 0 [,] +oo ) )
6 fdm 6051 . . . . . . . . 9  |-  ( M : ~P O --> ( 0 [,] +oo )  ->  dom  M  =  ~P O
)
75, 6syl 17 . . . . . . . 8  |-  ( ph  ->  dom  M  =  ~P O )
87adantr 481 . . . . . . 7  |-  ( (
ph  /\  m  =  M )  ->  dom  M  =  ~P O )
94, 8eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  m  =  M )  ->  dom  m  =  ~P O
)
109unieqd 4446 . . . . 5  |-  ( (
ph  /\  m  =  M )  ->  U. dom  m  =  U. ~P O
)
11 unipw 4918 . . . . 5  |-  U. ~P O  =  O
1210, 11syl6eq 2672 . . . 4  |-  ( (
ph  /\  m  =  M )  ->  U. dom  m  =  O )
1312pweqd 4163 . . 3  |-  ( (
ph  /\  m  =  M )  ->  ~P U.
dom  m  =  ~P O )
14 fveq1 6190 . . . . . . 7  |-  ( m  =  M  ->  (
m `  ( e  i^i  a ) )  =  ( M `  (
e  i^i  a )
) )
15 fveq1 6190 . . . . . . 7  |-  ( m  =  M  ->  (
m `  ( e  \  a ) )  =  ( M `  ( e  \  a
) ) )
1614, 15oveq12d 6668 . . . . . 6  |-  ( m  =  M  ->  (
( m `  (
e  i^i  a )
) +e ( m `  ( e 
\  a ) ) )  =  ( ( M `  ( e  i^i  a ) ) +e ( M `
 ( e  \ 
a ) ) ) )
17 fveq1 6190 . . . . . 6  |-  ( m  =  M  ->  (
m `  e )  =  ( M `  e ) )
1816, 17eqeq12d 2637 . . . . 5  |-  ( m  =  M  ->  (
( ( m `  ( e  i^i  a
) ) +e
( m `  (
e  \  a )
) )  =  ( m `  e )  <-> 
( ( M `  ( e  i^i  a
) ) +e
( M `  (
e  \  a )
) )  =  ( M `  e ) ) )
1918adantl 482 . . . 4  |-  ( (
ph  /\  m  =  M )  ->  (
( ( m `  ( e  i^i  a
) ) +e
( m `  (
e  \  a )
) )  =  ( m `  e )  <-> 
( ( M `  ( e  i^i  a
) ) +e
( M `  (
e  \  a )
) )  =  ( M `  e ) ) )
2013, 19raleqbidv 3152 . . 3  |-  ( (
ph  /\  m  =  M )  ->  ( A. e  e.  ~P  U.
dom  m ( ( m `  ( e  i^i  a ) ) +e ( m `
 ( e  \ 
a ) ) )  =  ( m `  e )  <->  A. e  e.  ~P  O ( ( M `  ( e  i^i  a ) ) +e ( M `
 ( e  \ 
a ) ) )  =  ( M `  e ) ) )
2113, 20rabeqbidv 3195 . 2  |-  ( (
ph  /\  m  =  M )  ->  { a  e.  ~P U. dom  m  |  A. e  e.  ~P  U. dom  m
( ( m `  ( e  i^i  a
) ) +e
( m `  (
e  \  a )
) )  =  ( m `  e ) }  =  { a  e.  ~P O  |  A. e  e.  ~P  O ( ( M `
 ( e  i^i  a ) ) +e ( M `  ( e  \  a
) ) )  =  ( M `  e
) } )
22 carsgval.1 . . . 4  |-  ( ph  ->  O  e.  V )
23 pwexg 4850 . . . 4  |-  ( O  e.  V  ->  ~P O  e.  _V )
2422, 23syl 17 . . 3  |-  ( ph  ->  ~P O  e.  _V )
25 fex 6490 . . 3  |-  ( ( M : ~P O --> ( 0 [,] +oo )  /\  ~P O  e. 
_V )  ->  M  e.  _V )
265, 24, 25syl2anc 693 . 2  |-  ( ph  ->  M  e.  _V )
27 rabexg 4812 . . 3  |-  ( ~P O  e.  _V  ->  { a  e.  ~P O  |  A. e  e.  ~P  O ( ( M `
 ( e  i^i  a ) ) +e ( M `  ( e  \  a
) ) )  =  ( M `  e
) }  e.  _V )
2822, 23, 273syl 18 . 2  |-  ( ph  ->  { a  e.  ~P O  |  A. e  e.  ~P  O ( ( M `  ( e  i^i  a ) ) +e ( M `
 ( e  \ 
a ) ) )  =  ( M `  e ) }  e.  _V )
292, 21, 26, 28fvmptd 6288 1  |-  ( ph  ->  (toCaraSiga `  M )  =  { a  e.  ~P O  |  A. e  e.  ~P  O ( ( M `  ( e  i^i  a ) ) +e ( M `
 ( e  \ 
a ) ) )  =  ( M `  e ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573   ~Pcpw 4158   U.cuni 4436    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   +oocpnf 10071   +ecxad 11944   [,]cicc 12178  toCaraSigaccarsg 30363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-carsg 30364
This theorem is referenced by:  carsgcl  30366  elcarsg  30367
  Copyright terms: Public domain W3C validator