Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcarsg Structured version   Visualization version   Unicode version

Theorem elcarsg 30367
Description: Property of being a Catatheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1  |-  ( ph  ->  O  e.  V )
carsgval.2  |-  ( ph  ->  M : ~P O --> ( 0 [,] +oo ) )
Assertion
Ref Expression
elcarsg  |-  ( ph  ->  ( A  e.  (toCaraSiga `  M )  <->  ( A  C_  O  /\  A. e  e.  ~P  O ( ( M `  ( e  i^i  A ) ) +e ( M `
 ( e  \  A ) ) )  =  ( M `  e ) ) ) )
Distinct variable groups:    e, M    e, O    ph, e    A, e
Allowed substitution hint:    V( e)

Proof of Theorem elcarsg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . . 4  |-  ( ph  ->  O  e.  V )
2 carsgval.2 . . . 4  |-  ( ph  ->  M : ~P O --> ( 0 [,] +oo ) )
31, 2carsgval 30365 . . 3  |-  ( ph  ->  (toCaraSiga `  M )  =  { a  e.  ~P O  |  A. e  e.  ~P  O ( ( M `  ( e  i^i  a ) ) +e ( M `
 ( e  \ 
a ) ) )  =  ( M `  e ) } )
43eleq2d 2687 . 2  |-  ( ph  ->  ( A  e.  (toCaraSiga `  M )  <->  A  e.  { a  e.  ~P O  |  A. e  e.  ~P  O ( ( M `
 ( e  i^i  a ) ) +e ( M `  ( e  \  a
) ) )  =  ( M `  e
) } ) )
5 ineq2 3808 . . . . . . . 8  |-  ( a  =  A  ->  (
e  i^i  a )  =  ( e  i^i 
A ) )
65fveq2d 6195 . . . . . . 7  |-  ( a  =  A  ->  ( M `  ( e  i^i  a ) )  =  ( M `  (
e  i^i  A )
) )
7 difeq2 3722 . . . . . . . 8  |-  ( a  =  A  ->  (
e  \  a )  =  ( e  \  A ) )
87fveq2d 6195 . . . . . . 7  |-  ( a  =  A  ->  ( M `  ( e  \  a ) )  =  ( M `  ( e  \  A
) ) )
96, 8oveq12d 6668 . . . . . 6  |-  ( a  =  A  ->  (
( M `  (
e  i^i  a )
) +e ( M `  ( e 
\  a ) ) )  =  ( ( M `  ( e  i^i  A ) ) +e ( M `
 ( e  \  A ) ) ) )
109eqeq1d 2624 . . . . 5  |-  ( a  =  A  ->  (
( ( M `  ( e  i^i  a
) ) +e
( M `  (
e  \  a )
) )  =  ( M `  e )  <-> 
( ( M `  ( e  i^i  A
) ) +e
( M `  (
e  \  A )
) )  =  ( M `  e ) ) )
1110ralbidv 2986 . . . 4  |-  ( a  =  A  ->  ( A. e  e.  ~P  O ( ( M `
 ( e  i^i  a ) ) +e ( M `  ( e  \  a
) ) )  =  ( M `  e
)  <->  A. e  e.  ~P  O ( ( M `
 ( e  i^i 
A ) ) +e ( M `  ( e  \  A
) ) )  =  ( M `  e
) ) )
1211elrab 3363 . . 3  |-  ( A  e.  { a  e. 
~P O  |  A. e  e.  ~P  O
( ( M `  ( e  i^i  a
) ) +e
( M `  (
e  \  a )
) )  =  ( M `  e ) }  <->  ( A  e. 
~P O  /\  A. e  e.  ~P  O
( ( M `  ( e  i^i  A
) ) +e
( M `  (
e  \  A )
) )  =  ( M `  e ) ) )
13 elex 3212 . . . . . 6  |-  ( A  e.  ~P O  ->  A  e.  _V )
1413a1i 11 . . . . 5  |-  ( ph  ->  ( A  e.  ~P O  ->  A  e.  _V ) )
15 simpr 477 . . . . . . 7  |-  ( (
ph  /\  A  C_  O
)  ->  A  C_  O
)
161adantr 481 . . . . . . 7  |-  ( (
ph  /\  A  C_  O
)  ->  O  e.  V )
17 ssexg 4804 . . . . . . 7  |-  ( ( A  C_  O  /\  O  e.  V )  ->  A  e.  _V )
1815, 16, 17syl2anc 693 . . . . . 6  |-  ( (
ph  /\  A  C_  O
)  ->  A  e.  _V )
1918ex 450 . . . . 5  |-  ( ph  ->  ( A  C_  O  ->  A  e.  _V )
)
20 elpwg 4166 . . . . . 6  |-  ( A  e.  _V  ->  ( A  e.  ~P O  <->  A 
C_  O ) )
2120a1i 11 . . . . 5  |-  ( ph  ->  ( A  e.  _V  ->  ( A  e.  ~P O 
<->  A  C_  O )
) )
2214, 19, 21pm5.21ndd 369 . . . 4  |-  ( ph  ->  ( A  e.  ~P O 
<->  A  C_  O )
)
2322anbi1d 741 . . 3  |-  ( ph  ->  ( ( A  e. 
~P O  /\  A. e  e.  ~P  O
( ( M `  ( e  i^i  A
) ) +e
( M `  (
e  \  A )
) )  =  ( M `  e ) )  <->  ( A  C_  O  /\  A. e  e. 
~P  O ( ( M `  ( e  i^i  A ) ) +e ( M `
 ( e  \  A ) ) )  =  ( M `  e ) ) ) )
2412, 23syl5bb 272 . 2  |-  ( ph  ->  ( A  e.  {
a  e.  ~P O  |  A. e  e.  ~P  O ( ( M `
 ( e  i^i  a ) ) +e ( M `  ( e  \  a
) ) )  =  ( M `  e
) }  <->  ( A  C_  O  /\  A. e  e.  ~P  O ( ( M `  ( e  i^i  A ) ) +e ( M `
 ( e  \  A ) ) )  =  ( M `  e ) ) ) )
254, 24bitrd 268 1  |-  ( ph  ->  ( A  e.  (toCaraSiga `  M )  <->  ( A  C_  O  /\  A. e  e.  ~P  O ( ( M `  ( e  i^i  A ) ) +e ( M `
 ( e  \  A ) ) )  =  ( M `  e ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   +oocpnf 10071   +ecxad 11944   [,]cicc 12178  toCaraSigaccarsg 30363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-carsg 30364
This theorem is referenced by:  baselcarsg  30368  0elcarsg  30369  difelcarsg  30372  inelcarsg  30373  carsgclctunlem1  30379  carsgclctunlem2  30381  carsgclctun  30383
  Copyright terms: Public domain W3C validator