Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsf2 Structured version   Visualization version   Unicode version

Theorem clsf2 38424
Description: The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 20852. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
clselmap.x  |-  X  = 
U. J
clselmap.k  |-  K  =  ( cls `  J
)
Assertion
Ref Expression
clsf2  |-  ( J  e.  Top  ->  K : ~P X --> ~P X
)

Proof of Theorem clsf2
StepHypRef Expression
1 clselmap.x . . . 4  |-  X  = 
U. J
21clsf 20852 . . 3  |-  ( J  e.  Top  ->  ( cls `  J ) : ~P X --> ( Clsd `  J ) )
3 clselmap.k . . . . 5  |-  K  =  ( cls `  J
)
43feq1i 6036 . . . 4  |-  ( K : ~P X --> ( Clsd `  J )  <->  ( cls `  J ) : ~P X
--> ( Clsd `  J
) )
5 df-f 5892 . . . 4  |-  ( K : ~P X --> ( Clsd `  J )  <->  ( K  Fn  ~P X  /\  ran  K 
C_  ( Clsd `  J
) ) )
64, 5sylbb1 227 . . 3  |-  ( ( cls `  J ) : ~P X --> ( Clsd `  J )  ->  ( K  Fn  ~P X  /\  ran  K  C_  ( Clsd `  J ) ) )
71cldss2 20834 . . . . 5  |-  ( Clsd `  J )  C_  ~P X
8 sstr2 3610 . . . . 5  |-  ( ran 
K  C_  ( Clsd `  J )  ->  (
( Clsd `  J )  C_ 
~P X  ->  ran  K 
C_  ~P X ) )
97, 8mpi 20 . . . 4  |-  ( ran 
K  C_  ( Clsd `  J )  ->  ran  K 
C_  ~P X )
109anim2i 593 . . 3  |-  ( ( K  Fn  ~P X  /\  ran  K  C_  ( Clsd `  J ) )  ->  ( K  Fn  ~P X  /\  ran  K  C_ 
~P X ) )
112, 6, 103syl 18 . 2  |-  ( J  e.  Top  ->  ( K  Fn  ~P X  /\  ran  K  C_  ~P X ) )
12 df-f 5892 . 2  |-  ( K : ~P X --> ~P X  <->  ( K  Fn  ~P X  /\  ran  K  C_  ~P X ) )
1311, 12sylibr 224 1  |-  ( J  e.  Top  ->  K : ~P X --> ~P X
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888   Topctop 20698   Clsdccld 20820   clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-cls 20825
This theorem is referenced by:  clselmap  38425
  Copyright terms: Public domain W3C validator